[39] Li, A.; Zhang, Y.; Sun, Z.; Niu, Z.; Lan, G. Photosensitizing metal-organic layers for photocatalysis, artificial photosynthesis and fluorescence imaging, Sci. China Chem. 2023, 66, 3372-3382.


Before PKU:


[38] Demarteau, J.; Cousineau, B.; Wang, Z.; Bose, B.; Cheong S.; Lan, G.; Baral N.; Teat, S.; Scown, C.; Keasling, J.; Helms. B. Biorenewable and circular polydiketoenamine plastics, Nat. Sustain. 2023, 6, 1426–1435.


[37] Zhan, C.; Lee, N.; Lan, G.; Dan, Q.; Cowan, A.; Wang, Z.; Baidoo, E.; Kakumanu, R.; Luckie, B.; Kuo, R.; McCauley, J.; Haushalter, R.; Keasling, J. Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition, Nat. Metab. 2023, 5, 1127-1140.


[36] Zhan, C.; Li, X.; Lan, G.; Baidoo, E.; Liu, Y.; Yang, Y.; Sun, Y.; Wang, S.; Wang, Y.; Wang, G.; Nielsen, J.; Chen, Y.; Bai, Z. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph, Nat. Catal. 2023, 6, 435-450.


[35] Lan, G.; Fan, Y.; Shi, W.; You, E.; Veroneau, S.; Lin, W. Metal-Organic-Zyme Evolution for Artificial Photosynthesis. Nat. Catal. 2022, 5, 1006-1018. (Selected as front cover)


[34] Ling, X.; Gong, D.; Shi, W.; Xu, Z.; Han, W.; Lan, G.; Li, Y.; Lin, W. Nanoscale Metal–Organic Layers Detect Mitochondrial Dysregulation and Chemoresistance via Ratiometric Sensing of Glutathione and pH, J. Am. Chem. Soc. 2021, 143, 1284-1289.


[33] Nash, G.; Luo, T.; Lan, G.; Ni, K.; Kaufmann, M.; Lin, W. Nanoscale Metal–Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy, J. Am. Chem. Soc. 2021, 143, 2194-2199.


[32] Shi, W.; Quan, Y.; Lan, G.; Ni, K.; Jiang, X.; Wang, C.; Lin, W. Bifunctional Metal–Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide, J. Am. Chem. Soc. 2021, 143, 16718-16724.


[31] Guo, N.; Ni, K.; Lan, G.; Arina, A.; Xu, Z.; Mao, J.; Weichselbaum, R.; Lin, W. Reprogramming of Neutrophils as Non-canonical Antigen Presenting Cells by Radiotherapy–Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression, ACS nano 2021, 15, 17515-17527.


[30] Ni, K.; Lan, G.; Guo, N.; Culbert, A.; Luo, T.; Wu, T.; You, E.; Weichselbaum, R.; Lin, W. Nanoscale Metal-Organic Frameworks for X-ray Activated and Personalized Cancer Vaccination, Sci. adv. 2021, 6, eabb5223. (Co-first author)


[29] Quan, Y.; Lan, G.; Shi, W.; Xu, Z.; Fan, Y.; You, E.; Wang, C.; Lin, W. Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis, Angew. Chem. Int. Ed. 2021, 60, 3115-3120. (Co-first author)


[28] Fu, S.; Ren, X.; Guo, S.; Lan, G.; Zhang, Z.; Lu, T.; Lin, W. Synergistic Effect Over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl (iso) Quinolinium Salts, IScience, 2020, 23, 100793.


[27] Luo, T.; Ni, K.; Culbert, A.; Lan, G.; Li, Z.; Jiang, X.; Kaufmann, M.; Lin, W. Nanoscale Metal–Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy, J. Am. Chem. Soc. 2020, 142, 7334-7339.


[26] Ni, K.; Lan, G.; Lin, W. Nanoscale Metal-Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy, ACS Cent. Sci. 2020, 6, 861-868.


[25] Quan, Y.; Lan, G.; Fan, Y.; Shi, W.; You, E. Lin, W. Metal-Organic Layers for Synergistic Lewis Acid and Photo-redox Catalysis, J. Am. Chem. Soc. 2020, 142,1746-1751. (Co-first author)


[24] Ni, K.; Lan, G.; Song, Y.; Hao, Z.; Lin, W. Biomimetic Nanoscale Metal-Organic Framework Harnesses Hypoxia for Effective Cancer Radiotherapy and Immunotherapy, Chem. Sci. 2020, 11, 7641-7653. (Co-first author)


[23] Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. Nanoscale Metal-Organic Frameworks Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy Angew. Chem. Int. Ed. 2019, 58, 1-6.


[22] Ni, K.; Lan, G.; Chan, C.; Duan, X.; Guo, N.; Veroneau, S.; Weichselbaum, R.; Lin, W. Ultrathin Metal-Organic-Layer Mediated Radiotherapy-Radiodynamic Therapy, Matter. 2019, 1, 1331−1353. (Co-first author)


[21] Lan, G.; Ni, K.; Lin, W. Nanoscale Metal-Organic Frameworks for Phototherapy of Cancer, Coord. Chem. Rev. 2019, 379, 65−81.


[20] Lan, G.; Ni, K.; Veroneau, S.; Feng, X.; Nash, G.; Luo, T.; Xu, Z.; Lin, W. Titanium-Based Nanoscale Metal-Organic Framework for Type I Photodynamic Therapy, J. Am. Chem. Soc. 2019, 141, 4204−4208.


[19] Lan, G.; Ni, K.; Veroneau, S.; Luo, T.; You, E.; Lin, W. Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-enhancement, J. Am. Chem. Soc. 2019, 141, 6859−6863.


[18] Lan, G.; Quan, Y.; Wang, M.; Nash, G.; You, E.; Song, Y.; Veroneau, S.; Lin, W. Metal-Organic Layers as Multifunctional 2D Nanomaterials for Enhanced Photoredox Catalysis, J. Am. Chem. Soc. 2019, 141, 15767−15772.


[17] Lan, G.; Ni, K.; You, E.; Wang, M.; Culbert, A.; Jiang, X.; Lin, W. Multifunctional Nanoscale Metal-Organic Layers for Ratiometric pH and Oxygen Sensing, J. Am. Chem. Soc. 2019, 141, 18964-18969.


[16] Lan, G.; Zhu, Y.; Veroneau, S.; Xu, Z.; Micheroni, D.; Lin, W. Electron Injection from Photoexcited MOF Ligands to Ru2 Secondary Building Units for Visible-Light-Driven Hydrogen Evolution, J. Am. Chem. Soc. 2018, 140, 5326-5329. (Selected as supplementary cover)


[15] Lan, G.; Ni, K.; Xu, Z.; Quigley, B.; Veroneau, S.; Song, Y.; Lin, W. Nanoscale Metal-Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy, J. Am. Chem. Soc. 2018, 140, 5670-5673.


[14] Lan, G.; Li, Z.; Veroneau, S.; Zhu, Y.; Xu, Z.; Wang, C.; Lin, W. Photosensitizing Metal−Organic Layers for Efficient Sunlight-Driven Carbon Dioxide Reduction, J. Am. Chem. Soc. 2018, 140, 12369−12373.


[13] Lan, G.; Ni, K.; Veroneau, S.; Song, Y.; Lin, W. Nanoscale Metal−Organic Layers for Radiotherapy− Radiodynamic Therapy, J. Am. Chem. Soc. 2018, 140, 16971−16975.


[12] Lin, Z.; Thacker, N.; Sawano, T.; Drake, T.; Ji, P.; Lan, G.; Cao, L.; Liu, S.; Wang, C.; Lin, W. Metal-Organic Layers Stabilize Earth-Abundant Metal-Terpyridine Diradical Complexes for Catalytic C–H Activation, Chem. Sci. 2018, 9, 143-151.


[11] Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Lan, G.; Tang, H.; Pelizzari, C.; Fu, Y.; Spiotto, M.; Weichselbaum, R.; Lin. W. Low-dose X-ray Radiotherapy-Radiodynamic Therapy via Nanoscale Metal–Organic Frameworks Enhance Checkpoint Blockade Immunotherapy, Nat. Biomed. Eng. 2018, 2, 600-610.


[10] Xu, R.; Drake, T.; Lan, G.; Lin, W. Metal-Organic Layers Catalyze Photoreactions without Pore Size and Diffusion Limitations, Chem. Eur. J. 2018, 24, 15772 – 15776.


[9] Xu, R.; Cai, Z.; Lan, G.; Lin, W. Metal−Organic Layers Efficiently Catalyze Photoinduced Polymerization under Visible Light, Inorg. Chem. 2018, 57, 10489−10493.


[8] Micheroni, D.; Lan, G.; Lin, W. Efficient Electrocatalytic Proton Reduction with Carbon Nanotube- Supported Metal−Organic Frameworks, J. Am. Chem. Soc. 2018, 140, 15591−15595.


[7] Ni, K.; Lan, G.; Chan, C.; Quigley, B.; Lu, K.; Aung, T.; Guo, N.; Riviere, P.; Weichselbaum, R.; Lin, W. Nanoscale Metal-Organic Frameworks Enhance Radiotherapy to Potentiate Checkpoint Blockade Immunotherapy, Nat. Commun. 2018, 9, 2351. (Co-first author)


[6] Zhu, Y.; Lan, G.; Fan, Y.; Veroneau, S.; Song, Y.; Micheroni, D.; Lin, W. Merging Photoredox and Organometallic Catalysts in a Metal–Organic Framework Significantly Boosts Photocatalytic Activities, Angew. Chem. Int. Ed. 2018, 57, 14090 –14094. (Co-first author, Selected as inside back cover, Very Important Paper)


[5] Ni, K.; Lan, G.; Veroneau, S.; Duan, X.; Song, Y.; Lin, W. Nanoscale Metal-Organic Frameworks for Mitochondria-Targeted Radiotherapy-Radiodynamic Therapy, Nat. Commun. 2018, 9, 4321. (Co-first author)


[4] Lan, G.; Ni, K.; Xu, R.; Lu, K.; Lin, Z.; Chan, C.; Lin, W. Nanoscale Metal-Organic Layers for Deeply Penetrating X-ray-Induced Photodynamic Therapy, Angew. Chem. Int. Ed. 2017, 56, 12102-12106. (Hot paper)


[3] Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F.; Lan, G.; Lin, W. Single-Site Cobalt Catalysts at New Zr82-O)82-OH)4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles, J. Am. Chem. Soc. 2016, 138, 12234-12242.


[2] Gu, J.; Lan, G.; Jiang, Y.; Xu, Y.; Zhu, W.; Jin, C.; Zhang, Y. Shaped Pt-Ni Nanocrystals with an Ultrathin Pt-enriched Shell Derived from One-pot Hydrothermal Synthesis as Active Electrocatalysts for Oxygen Reduction, Nano Res. 2015, 8, 1480-1496. (Co-first author)


[1] Gu, J.; Liu, W.; Zhao, Z.; Lan, G.; Zhu, W.; Zhang, Y. Pt/Ru/C Nanocomposites for Methanol Electrooxidation: How Ru Nanocrystals’ Surface Structure Affects Catalytic Performance of Deposited Pt Particles, Inorg. Chem. Front. 2014, 1, 109-117.