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INTRODUCTION 

This chapter is meant to be a condensed(!) tutorial on the intelligent use 
of post-Hartree-Fock (correlated) methods for the determination of molecu- 
lar structure and spectra.' The content is directed at users of the ACES 11, 
GAUSSIAN, CADPAC, HONDO, or GAMESSZ type of ab initio program, or 
anyone who would appreciate a broader knowledge of the modern treatment of 
electron correlation for molecules. The ready availability and applicability of 
these programs might be said to be one of the principal contributions of ab 
initio quantum chemistry to science, inasmuch as these systems provide a probe 
of structural, spectral, and reactivity characteristics frequently unavailable 
from experiment or, alternatively, facilitate interpretation of available experi- 
mental data. However, the ease of using these programs (and their official- 
looking output!) can mask many difficult situations that might not be recog- 
nized by users, resulting in misinterpretation of computational results. Theore- 
ticians who develop such program systems are aware of the potential shortcom- 
ings of each approximation, but many users lack a full understanding of the 
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theoretical foundations of the various methods. We try to explain some of these 
considerations, and how they affect the choice of method and basis set for a 
given application. Clearly, no single chapter can replace several courses in 
quantum chemistry and years of hands-on experience in the use of correlated 
electronic structure methods, but we think it is possible to provide a guide that 
provides much of the essential information required for intelligent application 
of the current level of post-Hartree-Fock methods without becoming “too 
theoretical. 

At the same time, we must recognize that quantum chemistry is an ongo- 
ing research area. Though it is mature enough to provide useful tools for a wide 
range of applications, even a year ago many of the tools described here and 
recently incorporated into the ACES 113 program system did not exist. Among 
other things, this means that the useful lifetime of any tutorial is finite, but by 
including some recent developments not widely known to the current user 
community, we hope that this chapter will have an effective lifetime that is 
relatively long. No unique recipe for doing post-Hartree-Fock calculations can 
be offered, but many of the considerations pertinent to such calculations can be 
identified and emphasized. In the application areas, by following the sequence 
from self-consistent field (SCF) to the highest current levels of correlated the- 
ory, we hope to show how approaches to different problems have evolved, and 
continue to progress, to provide better and more comprehensive results. 

After a discussion of the independent particle or Hartree-Fock (SCF) 
approximation4 to introduce some basic concepts, we discuss the correlation 
problem and available methods for its treatment.’-’’ We then address several 
topics that cover most of the applications of interest to users of quantum 
chemical program systems. These include molecular geometries, vibrational 
spectra, photoelectron spectra, electronic spectra, first- and second-order prop- 
erties, and nuclear magnetic resonance spectra. In each category of application, 
we address the range of applicability of SCF methods and the degree of correla- 
tion correction required, and we state what can be expected, numerically, from 
increasing levels of rigor. Our objective is to provide the reader with both a 
conceptual understanding and some appreciation of the approximate uncer- 
tainty for a given level of theory. Our intent is not to present the voluminous 
results on which these “error bars” are based-that is left to the literature- 
but instead to pick a few standard and a few difficult molecules that are 
representative of results one should expect. We do  not derive equations, but we 
do present basic equations to help the reader better appreciate the nature of the 
approach. Just as a picture can be worth a thousand words, an equation will 
often do the job of hundreds, and only in this way can we attempt to maintain 
some brevity while minimizing impreciseness. We assume only that the reader 
has some familiarity with Hartree-Fock t h e ~ r y . ~  On the other hand, nothing 
we say should unduly depend on appreciation of mathematical arguments- 
more conceptual, complementary explanations are employed whenever 
possible. 

To be most useful, we necessarily address the correlated methods that are 
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most readily applicable to the majority of problems of interest to chemists, 
thereby imposing several requirements that a method must meet. These include 
treating different molecular geometries with effectively equal accuracy; equiva- 
lent applications to open- and closed-shell systems; treatment of excited, io- 
nized, or electron-attached states as well as ground states; and predictions of 
other properties such as moments and polarizabilities. Also the term “post- 
Hartree-Fock” implies a single determinant starting point. Consequently, be- 
cause of their wide applicability and ease of use, we emphasize methods built 
upon a single reference when possible. These include many-body perturbation 
theory’ (MBPT, also known as MD in some program systems’), and its infinite- 
order coupled-cluster (CC) generalization,6311.12 [including quadratic configu- 
ration interaction (QCI)’~ as a special case] as well as some configuration 
interaction (CI) methods.’ However, we also mention situations for which 
multi (instead of single) determinant references are appr~pr i a t e , ’~  such as ex- 
cited states and certain transition states, and provide some alternative readily 
applicable tools that are no more difficult to understand and use than standard 
single reference theory. 

To avoid being discouraged by discussions of theory, some readers might 
prefer a “results-oriented’’ sequence. For those readers, a reasonable sequence 
would be to start with the section on molecular geometries, continue through 
the applications areas, and treat the preceding sections as appendices that 
define the various levels of theory. The sections on theory, however, were writ- 
ten to be clear and thorough. 

Most of the results reported here were obtained with the ACES I1 pro- 
gram systema3 The program provides CCiMBPT results for molecules, open or 
closed shell, using UHF, ROHF, RHF and QRHF reference functions (see later 
for acronyms). It offers analytical gradients for most such methods including 
MBPT ( 2 ) ,  (3) and (4), CCSD, CCSD(T), and analytical Hessians for MBPT(2) 
with RHF, UHF or ROHF reference functions. ACES I1 requires only simple 
Z-matrix (bond distance and angle) input plus key words that identify basis 
sets (most modern basis sets are catalogued), level of correlation, degrees of 
freedom to optimize, and other options. The program automatically introduces 
the available molecular symmetry and employs the largest Abelian subgroup to 
simplify and speed CC/MBPT calculations. ACES II provides CC methods for 
excited states (UV-vis spectroscopy), ionized states (photoelectron spectros- 
copy), molecular properties (ESR, NMR), and relativistic corrections. The pro- 
gram has a number of analysis tools to facilitate interpretation, locate optimum 
geometries and transition states, and evaluate vibrational spectra. 

INDEPENDENT PARTICLE MODEL 

The reference framework for most theoretical descriptions of molecular 
electronic structure and spectra is the independent particle or molecular orbital 
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(MO) model. In quantum mechanics, the energy of a molecule is based on the 
Hamiltonian operator 

(the prime eliminates the i = j and a = p term). The first term is the kinetic 
energy, which is given by a sum over one-particle operators corresponding to 
each electron ri. The second one-electron term is the Coulombic electron- 
nuclear attraction term, where Z ,  is the atomic number for the nucleus a, and 
rai measures the distance of electron i from the ath nucleus. The third term is 
the two-electron Coulomb repulsion term, where rij = Iri - rij is the distance 
between the ith and jth electrons. The final term is the nuclear-nuclear repul- 
sion, where R a p  = JR, - RpJ. In the Born-Oppenheimer “clamped nuclei” 
approximation that underlies nearly all molecular calculations, this term is a 
constant determined by the nuclear coordinates and is simply added at the end 
of a calculation. It introduces the characteristic repulsive wall for a potential 
curve and, thus, is important in the solution of the vibrational Schrodinger 
equation. 

Hence for the electronic Schrodinger equation, our objective is the solu- 
tion to XY, = EkYk for the spectrum of electronic states {Y,}, where 

with the two one-electron parts combined into h(i). 
The delightful thing about one-electron operators is that we can exactly 

solve the Schrodinger equation if the Hamiltonian is approximated by its one- 
electron part (% = & h(i) = Ho) since a “separable” wavefunction can be 
constructed as a product of one-particle functions, +$rj), 

where the notation Q0(r;R) means a function of all electron coordinates collec- 
tively indicated by r, that through the Born-Oppenheimer approximation is 
parametrically dependent on the collective location of the nuclei, R .  Using Eq. 
[31 we would have [zjh(i)l+i(ri)+2(rz) * * 

+n(rn) + ~1(ri)[h(r2)+2(r2)1+3(r3) * * + ‘ ‘ &(r1)+2(r2) ’ ’ [ h ( d h ~ ( r ~ ) I .  Then 
by knowing that each one-particle function was an eigenfunction to h(rj) with 
energy ei, 

4n(rn) = [h(ri)+i(ri)I+i(r2) * * 

we would have 
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H0Qo = E,@, 

However, we can do even better without sacrificing this convenient sep- 
arability. If we are able to approximate the two-particle term as some “aver- 
age” one-particle operator, u(r.) where, for example, we might average over the 
repulsion of all other electrons in the system toward electron j ,  then we obtain 
the expression 

I .’ 

[71 

If V is small (and it is clearly smaller than the two-particle term itself), then we 
might expect that replacement of ‘de by H, (which is a separable sum of one- 
particle Hamiltonians, 9 ( r i ) )  to be a good approximation. This simplification 
allows us to reduce the n-particle problem to a set of one-particle eigenvalue 
problems, 

and is the basis of molecular orbital theory. An MO is an eigenfunction of an 
effective one-particle Hamiitonian, and the electron in the MO is considered to 
have an orbital energy of E,. Eigenfunctions to a Hermitian operator {+I,} are 
either orthonormal or  may be chosen to be orthonormal in degenerate cases, so 

Although the basic concept will not change, two additional modifications 
must be made to this simple theory to make it consistent with other aspects of 
quantum mechanics. First, to fully characterize electrons we need to include 
spin. Consequently, this requires that to each spatial one-particle function +l(r,) 
we attach ci (spin-up) or p (spin-down). Hence, each one-particle function 
becomes +l(r , )a(wl )  or +l(rl)@(w,),  where wI indicates a coordinate in spin space. 
We can use an even shorter notation by specifying cp,(xJ = +I(rl)a(wI) to be spin 
orbitals, where the combined space-spin coordinate is x,. It is still true that 

Second, suitable solutions to the Schrodinger equation for electrons must 
have appropriate permutational symmetry. That is, an interchange of the space- 
spin coordinates x,  and xI must not alter the probability density 1’Pl2.’’ For this 
to be true, the interchange operator P,, has to have the effect, P , l q  = &‘P. For 

(+rl+I,) = %I. 

~ ~ x J c p , ~ x , )  = E,(PI(XJ. 
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electrons and other fermions, the minus applies (the Pauli exclusion principle), 
requiring that our wavefunctions be antisymmetrized products that assume the 
determinantal form 

1 
Qo = - fi 

The operator SB = (l/V%) Cp (-l)pP, where P presents a permutation of 
electron labels. SB forms a determinant by permuting all the space-spin labels in 
the simple product multiplied by the parity factor ( - l ) p  and normalizing the 
wavefunction. 

It is fairly easy to see that each of the n! products introduced by the 
determinant will behave in exactly the same way (i.e., Ho and SB commute) 
resulting in the same one-particle equations (suppressing the x) ,  

and in particular 

In this simple scheme, such other eigenstates of Ho as are formed by 
replacing one of the molecular orbitals cpj(j) occupied by electron j by some 
orbital unoccupied in the ground state, call it cp,(j), that is also an eigenfunction 
of %(i). Thus we would have 

where the eigenvalue is written 

= Eo + E, - ~j 

The general independent particle model described above becomes the 
Hartree-Fock, self-consistent field (SCF) approximation when Qo is the ener- 
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getically “best” single determinant approximation to W. (In some SCF ap- 
proaches, cDo is energetically optimal subject to certain constraints on the 
orbitals.) That is, we use the variational principle, E = (@olXlcDo) 2 E,,,,, to 
vary the form of the n-spin orbitals {cp,} subject to maintaining their orthogo- 
nality (cpijcpi) = 6 ,  until we obtain the lowest possible energy, ESCF. In the course 
of the energy variation, we find that 

1 
j =  1 71 2 

9(1) = h(1)  + u ( 1 )  = h ( 1 )  + E 1 cp:(2) - (1 - P12)cpj(2)d72 [14] 

which defines the operator, u( 1). The volume element in space-spin coordinates 
is d7. Self-consistency in the solution of Eq. [ 101 is necessary because the form 
of 8 is dependent on the form of the spin orbitals, {qj} via the u( 1) operator of 
Eq. [14]. 

Furthermore, 

so EsCF is not a simple sum of orbital energies. The double bar means (ij Ilij) = 
(ijlij) - (ijlji), where (ijlij) = I cp~(l)q~(2)(11r12)qi( l ) (pj(2)d71d72 = (iiljj). 

These particular spin-orbital equations are termed the unrestricted 
Hartree-Fock (UHF) equations, since variation here does not assume that all 
spatial orbitals are doubly occupied. That is, we permit ‘pi = +a and = 
+;B, where # +;. For a closed-shell system, we can insist on getting the best 
energy while having + j  = +,!, which defines the restricted Hartree-Fock (RHF) 
solution. Hence, UHF is formally the same for open and closed shells, whereas 
RHF applies only to the latter. For high spin open shells, we can also insist that 
our solutions have maximum double occupancy as shown in Figure 1. These 
are referred to as restricted open-shell Hartree-Fock (ROHF) solutions. For 
such a case there is a more complicated a(1) operator: but the orthonormal 
orbitals that emerge are degenerate. These different SCF models may be suc- 
cinctly compared by inspection of Figure 1. We collectively refer to any of the 
foregoing approaches as “SCF” methods. 
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1 t -  - tl  - 
UHF RHF ROHF 

Triplet state Singlet states only Triplet state 

Orbital energy level diagrams for UHF, RHF, and ROHF reference Figure 1 
functions. 

The result of an SCF calculation is the wavefunction a,, = QSCF, consist- 
ing of the MOs {cpi} ,  the density p = <pi@/, from which properties for some 
operator 8 are given by Tr(8p);  the total energy ESCF; and in the canonical UHF 
or RHF case, the orbital energies E,, which provide an (unrelaxed) estimate of 
the ionization potential via Koopmans’ theorem, E, = -l(i), for an electron in 
the ith MO. The approximation of interelectronic repulsion by the effective 
one-particle operator, u( 1) in Eq. [ 141, represents the potential one electron 
feels when moving in an average field generated by the remaining electrons. 
This follows because in the sum over j in Eq. [15], when j = i, we have (iillii) = 
0. 

All the SCF methods mentioned above are independent particle models. 
Since they serve as the reference for the post-Hartree-Fock methods discussed 
in this chapter, we should be aware of their properties. RHF applies only to 
closed-shell systems and is a singlet eigenfunction of spin. (Some authors insist 
that “restricted” must pertain to spatial symmetry as well as spin symmetry, 
but GAUSSIAN, ACES 11, and other program systems can in principle converge 
to broken spatial symmetry solutions even for closed shells, so we will not insist 
that RHF solutions be restricted to spatial symmetry eigenfunctions, too.) As is 
well known, and shown in Figure 2 for H2, an RHF solution does not separate 
correctly to open-shell fragments on a potential energy curve. (RHF separates 
correctly for closed-shell products such as BzH6 4 2BH3, or Be2 +- 2Be, or 
HeH+ + He + H+.) That is because RHF uses equal orbitals for different spins 
at all internuclear separations, which does not allow the orbitals to localize on 
the individual atoms. The RHF wavefunction for H2 is Ilu,alu,pl. Yet to get 
two H(1s) atoms at separation we must have.ls, = 1 u, + luu and lsB = la, 
- luu, where g and u refer to gerude (even) and ungerude (odd). Hence, correct 
separation would require the two determinants ClllugalugpI t C2~luualuu~~, 
where C1 = C2 at separation but C, % C2 at Re.  This two-determinant wave- 
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function is an example of a generalized valence bond (GVB) function. Compare 
the GVB result with the two SCF results in Figure 2. 

A high spin ROHF wavefunction is also an eigenfunction of spin: that is, 
j21ROHF) = S(S + 1)IROHF). The designation “high spin” is meant to elimi- 
nate such situations as an open-shell singlet (illustrated in Figure 3), which 
cannot be written as a single determinant. We would require two determinants, 
that is, (J+la+lP+2a+3P/ - ~ ~ $ ~ a c b , ~ + ~ ~ + ~ a ~ ) ,  to be a spin eigenfunction. Simi- 
lar situations pertain to the low-spin doublets also shown in Figure 3 ,  whereas 
the “maximum’y double-occupancy doublet is an eigenfunction of spin. Like 
RHF, an ROHF wavefunction usually will not separate correctly on a potential 
energy surface, as shown for 02(3Zi) in Figure 4. (An open-shell example like 
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1 
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LOW- Figure 3 Orbital energy level di- 
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doublet and low-spin doublet cases. 
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agrams for the open-shell singlet 

Figure 2 Potential energy curves for H,. 
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AB+ + At + By where B is a closed-shell system, will separate correctly in 
ROHF.) 

UHF is a fully unconstrained SCF method and actually represents several 
different solutions, depending on what symmetries are broken. First, it allows 
the wavefunctions to be impure spin states. Also, because the various kinds of 
spatial and spin symmetry are frequently broken in UHF wavefunctions, we 
can often obtain correct asymptotic separation on a potential energy curve as in 
Figure 2. For example, the UHF solution for H, breaks g and u symmetry to 
give localized l s A  and lsB functions, but, unlike the GVB solution, the UHF 
wavefunction does not have the symmetry of the molecule (see Figure 5; it is 
half of the correct solution!). To construct a proper wavefunction, the UHF 
solution must be mixed with its phase-reversed partner. The change in energy 
brought about by this process of symmetrization is related to the singlet-triplet 
splitting. However, this gap goes to zero in the limit of infinite separation, since 
the two UHF wavefunctions are degenerate. As a result, UHF and GVB energies 
are asymptotically degenerate. 

The UHF solutions for 0, in Figure 4 illustrate another aspect as the 
higher energy UHF only breaks spin symmetry, whereas the lower energy solu- 
tion, UHF2, breaks spatial symmetry, too. However, unlike H,, there is no 
UHF solution that correctly separates to two UHF O(3P) atoms for 02(3X;). 

In making practical SCF calculations we introduce a basic set {xJ, which 
usually consists of contracted Gaussian-type orbitals centered on each atom y, 
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Figure 5 
solution. 

Solid lines, UHF solution for H, at R = CQ; dashed lines, degenerate UHF 

that is, X s ( R y )  = z k  qsbexp(-6s,r?), X p x ( R y )  = xkT)x,xexp(-6x,r:), etc.7 where 
the coefficients and Ek are fixed typically from prior atomic Hartree-Fock 
calculations, but other prescriptions are possible. Using UHF as an example, 
spatial orbitals are associated with each spin via 

M 

Inserting Eq. [16] into the canonical SCF equation 8qi = ei’pj, leads to the 
matrix formulation of the UHF equations 

where F = (glali) and S = (ili), and the a or p dependence in F arises from the 
explicit spin integrated u( 1) part of 8. For RHF 8” = gp, of course. For ROHF 
there are two different forms of 8 to consider, one for the a-spin open-shell 
orbitals, and one for the a- or @spin doubly occupied orbitals. 

Because the matrix F* or FP has dimension M X M, we obtain M a-spin 
and M P-spin spatial orbitals via diagonalization. But we only use n, and np of 
these orbitals to construct the SCF solution. This leaves us with M - n, = N, 
and M - nP = N, spin orbitals unoccupied in the SCF solution. We identify 
these orbitals collectively by the letters a, b, c, . . . , whereas i, j ,  k, . . . indicate 
orbitals occupied in the SCF solution, and p,  4, r, s, . . . indicate any orbital. 
The orbitals u, b, t, . . . are frequently called “virtual” orbitals because they 
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are obtained as a by-product of diagonalizing the F matrix. They are not 
determined by the variational principle as are the occupied SCF orbitals. Physi- 
cally, an electron in a virtual orbital feels the average field of all n electrons 
instead of the n - 1 felt by an electron in an occupied orbital. The virtual 
orbitals are, however, a convenient orthogonal set of one-particle functions that 
satisfy 9(1)(pa(1) = q p a ( 1 )  for all a (like the occupied orbitals) and, combined 
with the occupied orbitals, span the space represented by the contracted Gaus- 
sian functions. The virtual orbitals play a critical role in correlated methods. 

CORRELATION PROBLEM 

An investigation of the potential curves for Nz (Figure 6 )  and F2 (Figure 
7 )  tells us a great deal about the deficiencies of a model of the Hartree-Fock, 
independent particle type. The inability of a restricted (RHF or ROHF) solu- 
tion to correctly separate to open shells causes the curve to rise too quickly, 
leading to a gross overestimate of the dissociation energy. Hence, RHF usually 
will underestimate equilibrium bond lengths (Re) .  For the same reason, the 
curvature (force constant) at Re will be larger than it should be, resulting in an 
overprediction of the vibrational frequency. UHF does not rectify this problem, 
even though it will often separate correctly, as in the N, example. The reason is 

I .  - 6x6CAS 

0.50 1.05 190 1.35 16J 1.M 
&d Length (Angstroms) 

-L 
1.91 2.10 

...... 
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GVB-SOPP 
GVB-SO 

2.40 

Figure 6 SCF, GVB, and CASSCF potential curves for N,. 
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Figure 7 SCF and GVB potential curves for F,. 

that for closed-shell systems, the UHF solution and the RHF are usually the 
same at R,, so the RHF deficiencies apply. (For some closed-shell examples a 
UHF solution which is necessarily below the RHF solution can be obtained, 
but that will not change our conclusion.) Furthermore, even when the UHF 
differs from the RHF, its lack of spin symmetry can affect the shape of the 
potential curve. For closed-shell cases in particular, where UHF is being used to 
effect correct separation, all triplet, quintet, and higher odd-spin states, which 
have higher energies, contaminate the UHF solution, causing the curve to rise 
too steeply slightly beyond equilibrium. (Because the UHF solution is not an 
eigenfunction of spin, we can resolve the UHF solution into its pure spin 
eigenstates, via [UHF) = Z,,(S~)C,, and c,, = (s,lUHF). If S, = 0, as for a closed 
shell, then only triplet, quintet, etc., can have S ,  = 0 components.) Because the 
UHF solution is separating correctly in this case, the curve can even show a 
slight artificial barrier to separation for some examples (see Figure 6). On the 
other hand, at the UHF separated atom limit, the several spin states all become 
degenerate. Hence, even though the spin multiplicity is erroneous, the energy is 
correct at the asymptote, as in the H2 example (Figure 2). 

Another failing of UHF is less frequent but pertinent for some examples. 
This is demonstrated by the F2 UHF curve (Figure 7), which is not bound. That 
is, two F atoms are lower in energy than is the F2 molecule, causing UHF not to 
predict the existence of the F2 molecule! 
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To correct the foregoing deficiencies of a Hartree-Fock reference, we have 
to introduce “electron correlation. ” What is electron correlation? As discussed 
above, in the SCF method we attempt to describe the contribution of the two- 
electron part of the Hamiltonian by one electron moving in an average field of 
the n - 1 other electrons. Overall, this is not a bad approximation, inasmuch 
as the SCF energy is usually more than 99% of the total (nonrelativistic) 
electronic energy of an atom or molecule. However, chemists are interested in 
much smaller energy differences, such as bond dissociation energies, and we see 
from Figures 4,6, and 7 that these are poorly described by SCF methods. Other 
quantities of interest (ionization potentials, electron affinities, electronic excita- 
tion energies, vibrational energies, etc.) are sensitive in varying degrees to the 
“average” electron interaction approximation of SCF theory. An average field 
neglects the fact that electrons, as charged particles, have instantaneous Cou- 
lombic interactions that keep them apart. That is, the motion of electrons is 
“correlated.” The movement of one affects the movement of all others, so we 
have a complicated many-body system to describe. Because the instantaneous 
interactions serve to keep electrons apart better than an average interaction, the 
interelectronic repulsion is reduced, causing the energy for the molecule to be 
lower than the SCF value. The energy difference is called the correlation energy: 

where EsCF can be any of our independent particle models, RHF, UHF, or 
ROHF. [Some authors use E R H F  (or EROHF) as the reference, so that EUHF 
already includes some degree of electron correlation by relaxing the double- 
occupancy restriction on the spatial orbitals. For our purposes, “correlation” 
will be the correction for any SCF reference.] 

To improve on a single determinant reference we must develop a superior 
treatment of the two-electron interaction. Logically, this would involve explicit 
use of the two-particle operator rij in a trial wavefunction, and such Hylleraas- 
type trial wavefunctions have been used to obtain the best results (for, e.g., He, 
Li, Be, H,, and LiH).” Analysis of certain other analytic properties of the 
correlation cusp l/(lri - ri1)16 have also been exploited to develop better de- 
scriptions without having to use wavefunctions that are explicitly dependent on 
r8 but such methods also have many computational restrictions. 

Electron correlation can be introduced solely with one-particle functions 
if we construct a wavefunction with the flexibility to allow electrons to stay 
away from each other. That means we need functions in regions of space 
different from just that sampled by the SCF calculation. As the SCF wavefunc- 
tion spans only the occupied space, we can introduce different regions of space 
by admitting the “virtual” orbitals that are unoccupied in the SCF into the 
wavefunction. We do this by constructing a configuration interaction (CI) 
wave function 
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which in addition to the SCF solution introduces single, double, and higher 
excitations. Qo is called the reference state wavefunction. The single excitation 
Qy = d((p,(l) - * cpu(i) . * cp,(n)) corresponds to replacing the occupied SCF 
orbital ‘pi  by the unoccupied orbital, ( p a .  0:; represents the double excitation, 
d((p,(l) - * * cpu(i) * * * cpb(j) - - cp,(n)), and so forth through triple Q$, 
quadruple @$‘if, . . . all the way to n-tuple excitations @$‘::::: for n electrons. 
The CI coefficients (c, C$, etc.) are then optimized to give the lowest varia- 
tional energy, 

Because the CI wavefunction is a much more flexible wavefunction than is Qo, 
Ecl < EsCF and we lower the energy in line with the effect of correlating 
electron motions. [If we add only single excitations, there can be no improve- 
ment of the RHF or UHF energy, since singles do not directly mix with these 
solutions (Brillouin’s theorem). Double excitations have to be included to intro- 
duce electron correlation.] 

The “full CI” is defined as the wavefunction that includes all possible 
excitations through n-fold for n electrons. If the {x,} basis used to represent the 
MOs were complete (which usually means infinite), then the full CI would be 
the “complete” CI, which is the exact solution to the nonrelativistic Schro- 
dinger equation. In a practical case {x,} is finite, so the full CI is the best that 
can be done in the basis set. Different correlated methods are recommended 
according to how closely they approach full CI results. 

In the full CI wavefunction we have three (not mutually exclusive) catego- 
ries of correlation corrections relative to Qo that should be distinguished: 

1. Excitations whose individual contributions are small, but because of an 
excessive number, their cumulative contributions are quite significant. 

2. Excitations required to provide a correct zeroth-order description as dic- 
tated by spin-symmetry considerations. 

3. Excitations whose coefficients will be comparatively large, as required to 
enable a molecule to separate correctly into fragments, in some excited 
states, and for certain other cases. 

Category 1 is called dynamic correlation because its function is to enable 
the electrons to stay apart. It usually represents the largest part of the total 
correlation energy. 

Category 2 occurs for the open-shell singlet example discussed earlier. A 
single determinant is not an eigenfunction of spin, so such states should always 
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be preferentially described using a two-determinant reference. We will refer to 
this as symmetry required, or static correlation. When these states are described 
by a single UHF determinant 1~$~a( l)C$,P(2)1 the wavefunction corresponds to a 
5050 mixture of the lC$1a(1)+2P(2)l t l+lP(1)+2a(2)/ singlet (minus) and 
triplet (plus) state. Because the latter state can also be described by the high 
spin single determinant l)+,a(2)1, the triplet energy can be obtained, and, 
aided by that information, approximate methods can be used to subtract the 
triplet contamination from the energy for the single UHF determinant,” but 
this is far less desirable than a treatment using the two-determinant reference. 

Category 3 is often called nondynamic correlation and is perhaps best 
described by considering the simplest possible correlated wavefunction for F, 
and N, that can correctly dissociate. In the F, case (Fig. 7 )  this is a GVB 
wavefunction,” which in the orthogonal orbital form for F, consists of the 
two-determinant wavefunction C, /core 2pu,a2pugP~ + C,jcore 2pa,a2puuPI. 

As discussed above for H,, a u, must be mixed with a ug function to 
allow the electrons to localize on the two separated atoms in a model that, 
unlike UHF, preserves spin and spatial symmetry. Furthermore, the GVB result 
requires that the form of the orbitals 2pa, and 2pu, be determined together 
with the configuration coefficients C1 and C,. GVB is the simplest example of a 
multiconfiguration (MCSCF) calculation.1s”9 The GVB result for F,, shown in 
Figure 7 is qualitatively correct as a function of internuclear distance R. 

Similarly, in Figure 6 we show results for Nz with analogous GVB wavefunc- 
tions for the triple bond:’ which requires a product of wavefunctions consisting of 
two orbitals for each of the three bonds. This means we mix the 2p0, and 2pu, 
orbitals and also mix the 2p7rxu, 2pnXg, 2pn,,, and 2pnYg This results in a set of 
determinants starting with Q0 = /core 2 p u ~ a 2 p ~ , ~ 2 a x u a ~ , , ~ 2 n y u a 2 n s ~ ~ ~  
through all other symmetry-allowed combinations including the hextuple excitation 
/core 2pa,a2p~,~2n,~~n,,P2n,pa27F,,PI. If we allow the three two-determinant 
products to be singlet coupled (GVB-SO-PI’) (8 configurations) only, we do not get 
the correct asymptote. Allowing singlet and triplet coupling among the three bonds, 
GVB-SO (14 configurations) and xGVB (20 configurations), both of which arise 
from singlet and triplet coupled combinations including the open-shell singlets, 
correctly separate N, into two 4s N atoms as shown in Figure 6.  The complete active 
space SCF (CASSCF)I4 takes this one step further. It recognizes that N, requires six 
orbitals, 3ug, 3u,, the pair ln,, and the pair 1ng and distributes the six electrons 
among them in all possible ways. This gives the xGVB set plus others (32 configura- 
tions) and clearly effects proper separation to two N(4S) atoms. In Fig. 6,  the 
CASSCF is nearly indistinguishable from the xGVB result. 

This nondynamic correlation does not pertain to keeping electrons apart, 
which is a dynamic effect, but instead emphasizes having the appropriate sets of 
excitations in the wavefunction that requires a “large coefficient” to permit a 
more proper zeroth-order description. [“Large” is not well defined. In practice 
a coefficient for a determinant greater than 0.2 in an intermediately normalized 
wavefunction (see later) is frequently cause for concern, while for well-defined 
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dynamical correlation effects all determinants have coefficients < 0.1 .] Other 
examples include O,, where the competing resonance structures require at least 
two determinants in its zeroth-order solution (see section entitled Electronic 
Spectra). 

These different categories of correlation effects are not mutually exclusive 
because the full CI is the exact result in a basis for any situation. Hence, even 
when a single determinant SCF model is a poor approximation to the right 
answer (e,g., RHF for N, at a large internuclear separation), the full CI solution 
would properly weight the other important configurations to give the right 
result. Similarly, even for the open-shell singlet example we could start with just 
the 141a42pI determinant, and since the double excitation I~$~p4~al  is in the 
full CI solution, we will obtain both terms with the same coefficient but oppo- 
site sign in the full CI for the singlet solution. 

Thus, we have two operational choices: 

We can take the dynamic correlation route and always start with a single 
determinant reference, even when it is a poor approximation, and introduce 
higher categories of excitations until we believe our wavefunction is flexible 
enough to obtain satisfactory results. 
We can insist on first introducing the relevant static or nondynamic correla- 
tion to have a qualitatively correct zeroth-order solution and then augment 
it by dynamic correlation to obtain quantitative results. 

The preferable route will depend on the problem, the ease of implementation, 
and the computational efficiency. 

The single reference (dynamic correlation) approaches will lead us to CI 
approximations such as all single and double excitations from a single determi- 
nant (CISD);’ or many-body perturbation theory (MBPT)’ [also known as 
Mnrller-Plesset (MP) perturbation theory’] ; or coupled-cluster (CC) methods6 
for single and double excitations like CCSD2’ and its approximation termed 
quadratic CI (i.e., QCISD);I3 or coupled-cluster single, double, and triple exci- 
tations ( CCSDT):22 The second operational choice above will introduce multi- 
reference (MR) methods like MCSCF,’’~’’ GVB,” or CASSCF14 [the latter is 
also known as full-optimized reaction space (FORS)L3]. Each of these references 
may then be augmented by additional dynamic correlation via CI, as when 
single and double excitations from a selection of reference determinants are 
included to define a MR-CISD wavefunction.’ More specific designations are 
GVB-CISD and CASSCF-CISD and so on. Furthermore, there are similar MR- 
MBPT24-26 and MR-CC  method^.^'"^ 

Whereas CI methods are variational, giving upper bounds to the total 
energy, the other discriminating factor in choice of correlated method is 
whether a method scales correctly with size, or, equivalently, the number of 
electrons. This (size) extensive property,33 which can be quite significant nu- 
merically, is satisfied by many-body methods (e.g., MBPT, CC, and QCI 
methods) but not by CI methods other than full CI. “Truncated” CI ap- 
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proaches are often subject to semiempirical extensivity  correction^^^ in an 
attempt to alleviate this failing. We will further discuss the consequences of 
inextensivity in the next section. MR-CC has the attraction of being extensive 
while including nondynamic correlation. One particularly useful development 
in MR-CC is the recently developed two-determinant reference open-shell sin- 
glet (TD-CCSD) method3'. Another is the Fock space MR-CC27-29 for excited, 
ionized, and electron-attached states, both in ACES II.29>30 

METHODS FOR ELECTRON 
CORRELATION 

Methods 
Given a set of n = n, + np molecular spin orbitals i, j ,  k, . . . occupied in 

@,,, and a set of N = N, + N, molecular spin orbitals a, b, c, . . . that are 
unoccupied in Qo, to allow for electron correlation our objective is to introduce 
the excited molecular orbitals a, b, c, . . . that do not appear in Q0 to make an 
improved wavefunction 

In the limit of all possible n excitations (since m, is a good quantum number- 
we can only excite to orbitals with the same spin), we have the full CI (FCI) 
solution. Notice that this CI wavefunction applies equally well for open and 
closed shells and, for the latter, permits either ROHF, UHF, or  other orbitals. 
The full CI solution has several attractive properties: 

1. 

2. 

3. 

4. 

It gives the best solution for the energy and density in the contracted (AO) 
basis set for any states. 
It is "extensive" (i.e., it scales properly with molecular size and the number 
of electrons). 
It is invariant to any change in the form of the MOs, so any orbitals are 
satisfactory. 
It provides an upper bound to the exact electronic energy for any state. 

The full CI is impractical except as a reference because the number of determi- 
nants is asymptotically -iV. That means its application is possible only for 
small molecules and small basis sets. In practice, calculations using -25 X 106 
determinants for H20 in a double zeta plus polarization (DZP) basis have been 
made3' and -108 determinants for CH3 in a triple zeta plus polarization (TZP) 
basis.36 
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The three most popular methods for introducing electron correlation are 
(truncated) CI such as CISD, MBPT, and CC theory. Other correlated methods 
(e.g., propagator methods,37738 which are related to the last two) have also been 
widely used for excitation and ionization energies. All can be viewed as differ- 
ent ways of building in some of the excitations that are present in the FCI. The 
comparative merits of the methods depend on how rapidly they converge to the 
FCI solutions for energies, densities, and other quantities of interest. 

Configuration Interaction 
CI methods are straightforward. Once truncated to some subset of excita- 

tions, the coefficients, Cq,C$, . . . are determined from the variational princi- 
ple E,, = ( ~ c ~ ~ ~ ~ ~ c ~ ) / ( ~ ~ l ~ ~ c , )  1 E,,,,, to give the lowest energy for the 
ground state (or lowest state of a given symmetry). Introducing only double 
excitations defines CID, whose wavefunction is qclD = (1 + c2)@0, The 
variational condition is equivalent to the matrix equation 

where D in 

indicates all double excitations, a$’. Furthermore, in CI, each member of a 
subset of excitations will improve the energy somewhat, so adding singles, 
E(C1SD) < E(CID). Similarly, if the most important few triples are added (call 
it CISDT’) then E(C1SDT’) might be a good approximation to the full 
E(C1SDT). Truncated CI methods also provide upper bounds to all electronic 
states. However, in chemistry we are interested in energy differences (dissocia- 
tion energies, excitation energies, activation barriers, etc.), and there is seldom 
a bound on them. Furthermore, unlike MBPT and CC methods (see below), CI 
methods are not “extensive,” and this can cause numerically significant errors. 

Because the full CI (FCI) is the ultimate result in a given basis set, we can 
partly assess the comparative quality of different correlated methods by com- 
paring with the limited number of full CI results available for  molecule^.^^^^^^^^ 
These are available for BH, FH, and H20  at the equilibrium bond length Re,1.5 
Re,  and 2.0 Re in a DZP basis (see later). As discussed earlier, the RHF 
reference function separates incorrectly when going to open-shell fragments, so 
as bonds are stretched, it offers a particularly poor approximation to the cor- 
rect answer. Because the FCI is the best possible answer, this behavior has no 
effect on those results, but for a truncated CI, MBPT, or CC calculation, a poor 
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reference places extreme demands on the method.'The ability of a correlated 
method to overcome such a poor reference is a testament to its accuracy and 
applicability. The errors in the energy relative to FCI for various truncated CI 
methods are shown in Table 1. 

The correlation energy error in these examples ranges from 102 to 370 
millihartrees, with an average of 213. CID accounts for about 88% of the 
correlation. 

We can make a few observations. The variational condition guarantees 
that the error is above the exact result. Because of incorrect separation of the 
RHF reference, the errors are greatest at twice the equilibrium Re. Comparing 
the different CI truncations, we see that on average single excitations account 
for -4, triples for -5, and quadruples for a whopping -15 millihartrees. The 
vast improvement of CISDTQ compared to CISDT emphasizes the numerical 
importance of quadruple excitations in CI. Very accurate methods should in- 
clude these effects, and MBPT and CC methods do so in a convenient way. 

Many-Body Perturbation Theory 
The next method we consider is many-body perturbation theory 

( ~ ~ p ~ ) . 4 1 3 ~ 2  This approach exploits the form of the Hamiltonian in Eq. [7] 

X = H , + V  ~ 5 1  

1 1  
2 . . rii v =  - 2 - - c u ( i )  

1 3 1  

so that we attempt to solve the correlation problem by introducing the pertur- 
bation, V. In other words, the exact (FCI) wavefunction can be written as a 
perturbation expansion 

instead of the form in Eq. [21]. Similarly, we have the eigenvalue E = Eo + E(1) 
+ E(2) + - .. Inserting into the Schrodinger equation, with a), = I$,, we obtain 

All the terms in such an expansion are linearly independent, so this 
equation must be satisfied for each order m. Therefore, 
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By multiplying on the left by $o and using the zeroth-order equation and 
((+o/$o) = 1, (Jl0l+("') = 0), we find that 

In the energy expression we are using intermediate normalization. Remember 
that all wavefunctions are determined only up to an arbitrary constant, which 
is frequently chosen to make (Tl'P) = 1 to provide a convenient probability 
interpretation. In perturbation theory (and in CI as we are doing it here), it is 
more convenient to choose the intermediate normalization ($o('P) = 1, which is 
equivalent to (Jrol$(kj) = 0 for all k > 0. The relationship between a fully 
normalized wavefunction, ('PI*) = 1, and an intermediately normalized one is 
straightforward. If 'P = &CkQk and ('Pl'P) = 1, for {ak} a set of functions 
orthogonal to Qo, then 9' = Qo + Xk+o(Ck/CO)Qk is intermediately nor- 
malized, since (@o['P') = 1. This normalization has the effect of simplifying the 
energy expression to that in Eq. [30]. 

Consistent with the intermediate normalization condition, we want all 
our perturbed n-particle functions Wm' to be orthogonal to 'Po. Just as in the 
case of CI, a natural set to represent these functions is the set of single, double, 
etc., excitations. 

To obtain +(I)  consider its expansion in double excitations, 
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where the ( 1 )  on the coefficient emphasizes its first-order character. Because 
every excitation like @$ is an eigenfunction of Ho (i.e., H0@$ = ESP@$), 

it follows that 

Consequently, inserting JI(1) from Eq. [31] into Eq. [29b] and left-multiplying 
by another double excitation @if and integrating, via orthonormality of the 
excitations, we obtain 

or 

a> b 

and 

This second-order correction defines MBPT(2), and it is the simplest correla- 
tion correction. It should be clear that triple and higher excitations cannot 
conrribute to because V includes only a two-particle operator. Following 
the same procedure as above for single excitation contributions, Q.9, the results 
depend on ((DolV1@.9) = ((DolHI@.P) = (i191a) = 9;, = 0, which is why no single 
excitations can mix with an RHF or  UHF <Po. For an ROHF reference MBPT, 
however, 9,a # 0. This introduces an additional term in E(2) and various 
additional terms in higher order. These have to be included in ROHF-MBPT 
applications, but that has been accomplished in our ROHF-MBPT method. 

Remembering that the average correlation energy correction for the full 
CI examples is 213 millihartrees MBPT(2) typically accounts for 85-95% of 
the correlation energy obtainable in a given basis set, as seen in Table 2. 
Because MBPT(2) depends only on the relatively small subset of two occupied 
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and two virtual orbital two-electron integrals (ij [lab) (most integrals would be 
four-virtual (abllcd) type) and the SCF orbital energies, it is computationally 
easy to evaluate EQ). E(2 )  itself is an -n2N2 procedure but the transformed 
integral (ijllab) requires an -Mn2N2 step, where M = n + N. Because 
MBPT(2) offers such a large percentage of the correlation correction, it typ- 
ically provides much better results than SCF alone. We will see that in many 
applications. 

Higher orders of perturbation theory are not conceptually too different 
from E(2). To get third order we have to consider $(2), but for RHF and UHF 
cases, it depends only on double excitations. We would have to evaluate terms 
that depend on integrals like (abllcd), (iaIljb), and (ijllkl) in addition to the 
(ij Ilab) used in E(2) .  For example, the particle-particle ladder (PPL) part of E(3)  

is 

. a>b 
c>d 
i > /  

This term causes MBPT(3) to require an -n2N4 algorithm, like CID (or CISD). 
In fact, the CID coefficients are Cf' = C$'(l) + Cf'(2) through second order; so 
we would expect CID and MBPT(3) to usually give similar results. From Table 
2 we see that the average absolute error of MBPT(3) is 22.9 millihartrees, 
which is close to the CID error of 25.9. 

Some important distinctions emerge in fourth order. First, even for RHF 
or UHF E(4)  has contributions from single, triple, and quadruple excitations in 
addition to double excitations. 

Now we see the consequences of (size)-extensivity for the first time. The last 
term, which depends on € ( 2 ) ,  arises from the second term on the right in Eq. 
[29c] after multiplying on the left by (+(1)1 and using the fourth-order energy 
formula. This term plays a critical role in distinguishing MBPT from CI. If we 
continued approximating the CID coefficients by higher order perturbation 
theory, we would have 

because € ( 2 )  arises only from double excitations. 
To understand what is wrong with this, it is convenient to consider a 

noninteracting system of mH2 molecules. For such a system, the exact wave- 
function for mH2 would be V!(mH2) = [JI(H2)]m. Furthermore, the exact en- 
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ergy E ( m H 2 )  = mE(H2). Since the exact energy must be written in terms of 
perturbation corrections, it follows that EScF(mH2) = mEs,,(H2), E(2)(mH2) = 
mE(2)(H2), E(3)(mH2) = mE(3)(H2), etc. But notice, the negative (renormaliza- 
tion) term depends on E(2)  and (+(1)1+(1)) and since E(2)(mH2) = mE(2)(H2) and 
since 4 ~ ( ~ ) ( m H ~ )  = [+(1)(H2)]m,  (+(l)(mH2)(+(1)(mH2)) = m(+(1)(H2)l+(’)(H2)), 
the quantity €(2)(+(1)1$(1)) depends on m2! How can this be, because we must 
have E(4)(mH2) = mE(4)(H2)? This can happen only if somehow the m2- 
dependent part of the E(2)(+(1)1+(1)) term cancels another part of E(4) to elimi- 
nate the m2 dependence. This is exactly what happens. Part of E g )  cancels 
E(2){$(1)l+(1)). (There are actually two parts to W)($(l)I+(l)); an m2-dependent 
“disjoint part” and an m-dependent “conjoint or EPV part.” The former is 
canceled while the latter contributes to Eg).)  However, because and 
{$(‘)I+(’)) depend only on double excitations, the cancellation can occur only 
when quadruple excitations are allowed to be in the wavefunction! Hence, CID 
is not extensive’ because it does not scale correctly with m units because of the 
absence of quadruple excitations. Higher orders would similarly require even 
higher excitations until the FCI is reached! This failing of CI causes the para- 
doxical situation that a finite-order approximation to CID [e.g., MBPT(2) or 
MBPT(3)l frequently can be superior to the converged E(CID) result because 
the CI retains such nonextensive terms as E(Z){+(l)l+(l)). 

Although illustrated by CID, the inextensivity failing obviously pertains 
to any truncated CI, since the cancellations that must occur always involve the 
higher excitations that are not included in the truncated CI. The numerical 
effects of these nonextensive terms is important even for small molecules; and, 
today, most CI calculations include an estimate for these terms that allows their 
value to be subtracted from the CI energy (Davidson’s a p p r o ~ i m a t i o n ~ ~ ) .  
Many-body methods, instead, make the intelligent decision to eliminate all 
such nonphysical terms from the equations before calculation. This makes the 
method formally suited to describing many-bodies (i.e., many electrons). The 
term many-body perturbation theory emphasizes this cancellation of terms 
(also known as unlinked diagrams) that are not in the full CI solution. This 
leaves just the appropriate (linked) ones, in the energy and wavefunction: the 
so-called linked-diagram theorem.4s Now, by building approximations on that 
equation we are already closer to the exact solution. This is a vastly better 
approach formally, operationally, and in terms of numerical accuracy for a 
given level of computation. Though extensive, MBPT is not variational, how- 
ever, as negative corrections in Table 2 show. 

The SDQ-MBPT(4) method, which includes all terms except the triple 
excitations, requires only an -n2N4 algorithm compared to -n3N4Nit (Nit = 
number of iterations) for CISDT. Allowing for its nonvariational character, it is 
generally better than CISDT (Table 2) because it has already incorporated most 
of the effects of quadruple excitations. Full MBPT(4) also benefits from the 
effect of triple excitations, is a noniterative -n3N4 procedure, and is considera- 
bly closer to the full CI than is CISDT. In fifth order the additional “con- 
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nected” effects of quadruple excitations are introduced, but these are compara- 
tively small compared to those already in SDQ-MBPT(4). MBPT(5)44 is an 
-n3W method but shows little numerical improvement over MBPT(4), despite 
its much greater expense. CISDTQ, which is also correct through fifth order, is 
still better than MBPT(5) because it includes all orders of perturbation theory 
among those categories of excitations. 

Clearly, extensivity pays important dividends numerically, but it should 
be remembered that extensivity is only one possible source of error, and others 
can be equally or more important for a given problem. In particular, for some 
problems we might prefer the nonextensive multireference CI method instead 
of single reference MBPT or CC. 

Coupled-Cluster Theory 
The failing of MBPT is that it is basically an order-by-order perturbation 

approach. For difficult correlation problems it is frequently necessary to go to 
high orders. This will be the case particularly when the single determinant 
reference function offers a poor approximation for the state of interest, as 
illustrated by the foregoing examples at 2.0 R,. A practical solution to this 
problem is coupled-cluster (CC) theory.46 In fact, CC theory simplifies the 
whole concept of extensive methods and the linked-diagram theorem into one 
very simple statement: the exponential wavefunction ansatz, 

[361 
1 -  1 Y,- = exp(-i)QO = (1 + .i + 2 ~ 2  + - f 3  + . . .)cp, 3 !  

where 

Just as in ep in a CI wavefunction, TP generates p-fold excitations. Hence, CCD 
gives 

1 *,,, = (1 + -i2 + 2 I-i’; + - * a )  cp, 

= ~0 + C t : b a z b  + 2 tsbtt;;‘Q!k;d + * * (371 
i<j i c j c k < l  

a< b a c b c c c d  

Unlike CID, even CCD33 introduces quadruple excitations and hextuples 
@$$$, etc., up to all n-tuples for n electrons. However, the number of coef- 
ficients to determine in CCD ($) is exactly the same as in CID (C$), because 
the coefficients of the higher excitations are products of the same coefficients. 
Since they arise from ?$2, ?3/3!, etc., we call the latter “disconnected” terms 
(not unlinked; all terms in the exact wavefunction are linked!), which will lead 
us to a nonlinear set of eguations for the determination of the t:b. ‘‘Connected” 
quadruples come from T4. 
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The correct scaling or extensive property is manifestly obvious in CC 
methods because for noninteracting H, molecules (described with localized 
orbitals), 

and in CC theory 

This means 

Note that Eq. [40] is true regardless of the subset of CC excitations (T,) 
included (CCD,33 CCSD,” CCSDT,” etc.). Similarly, it is true for such ap- 
proximations as CCSD + T(CCSD)47 and CCSD(T)48749 (see below), where the 
initial contributions of triple excitations are computed noniteratively after a 
CCSD calculation, as well as essentially any other approximation based on CC 
and MBPT theory. [The CEPA (coupled electron-pair  approximation^)^^ are 
approximations to CC theory but do not necessarily retain all the invariance 
properties required to ensure rigorous extensivity.] 

The use of the noninteracting limit above is pedagogical, but the conse- 
quences of the exponential ansatz clearly pertain to the interacting case, since 
there are no “unlinked” terms. It is important to recognize that it pertains to a 
high density electron gas, too, which mimics a metal. Then the exponential 
ansatz guarantees correct scaling with the number of electrons. Extensivity, 
whose rigorous definition is the absence of “unlinked d i ag ra rn~ , ’ ”~~~  is a very 
general and important consistency condition for a correlated method, and it is 
absolutely essential for applications of quantum chemistry to extended 
systems. 

The CC equations are obtained by inserting the wavefunction from Eq. 
[36] into the Schrodinger equation projected by the reference function Q0 and 
single, double, and higher excitations. Using 

for CCD we have 
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where AE is the correlation energy. The equations projected by excitations 
provide equations for the coefficients, {t:;}. The actual equations are 

a>b a>b 

Notice, no higher terms than f$ can contribute to the CC equations because 
f$ would generate hextuple excitations, which would have vanishing matrix 
elements with @::. Therefore, even though the exponential CC wavefunction 
consists of all terms up to n-fold excitations, the equations for the coefficients 
{t$} are lower order. 

Explicitly, the canonical orbital CCD equations can be further simplified 
to 

Notice the elimination of AE from the CCD equations, unlike those for CID. 
Having algebraic instead of eigenvalue equations is a consequence of exten- 
sivity. If we include TI in addition to T,, we would obtain coupled equations 
for t4 and $. Including T3 and its coefficients t$, we have coupled equations 
for t:, t::, t$, etc. Given a set of transformed two-electron integrals, the 
solution of the nonlinear CC equations is obtained by iteration exploiting 
various acceleration techniques. Table 3 compares results for CCD, CCSD, 
CCSDT, and CCSDTQ” to full CI. These are clearly the most accurate results 
we have yet considered. Like MBPT, CC results are not variational, and nega- 
tive errors compared to full CI are possible. 

The low order iterations of the CC equations recover MBPT approxima- 
tions. For example, taking the first approximation to Eq. [44] and inserting it 
into Eq. [42], 
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i>j 
a>b 

Plugging t$'(') into the second, third, and fourth summations on the right of 
Eq. [44] gives and = %~&t;?ib(2)( abllij). Fourth-order quadruple exci- 
tations arise from inserting tf ' ( ' )  into the term quadratic in t, along with t$(2)  
inserted into the terms linear in t, because both terms contribute to t$b(3). This 
order defines the DQ-MBPT(4) approximation, which continuing to conver- 
gence must give CCD. Including singles via the CCSD equations gives SDQ- 
MBPT(4), which at convergence gives CCSD. Similarly, if we also introduce the 
triple excitation T3 equations, we obtain SDTQ-MBPT(4) or just MBPT(4) as 
the fourth-order approximation to CCSDT. 

Computationally, CCD and CCSD are -n2N4Ni, methods, whereas 
CCSDT is -n3N5Ni, and if T4 were added to give CCSDTQ, we would require 
an -n4N6Ni, algorithm. The corresponding CI methods have the same compu- 
tational dependence but do not introduce the higher excitations that are found 
in the CC methods. 

It is possible to combine some aspects of MBPT with CC theory to retain 
much of the infinite-order aspect of CC while saving significantly in the compu- 
tational cost for higher cluster operators. This may be done iteratively or 
noniteratively. Taking just the most important contributions of T3 (as judged by 
order in perturbation theory) and coupling to all TI and T2 terms, we obtain 
CCSDT-1.52 This still requires an -n3N4Ni, algorithm, though. Results are 
shown in Table 3. 

If we further consider only these T3 terms in CCSDT-1 noniteratively 
(i.e., we do not let the T3 coefficients change), we obtain highly accurate but 
considerably less expensive methods. This is done as follows. The fourth-order 
triple excitation correction may be written as 

where t$(" would consist of several terms derived from T,  coefficients of the 
form &(bcllei)ti",'(') and Z,( malljk)t$(l). The former requires an n3N4 evalua- 
tion. If we simply use the converged tg and t z  coefficients from CCSD instead 
of their first-order approximations (Eq. [45]) in Eq. [46], we would have high- 
er than fourth-order terms. In this manner we evaluate the n3N4 step just one 
time and obtain CCSD + T(CCSD)47. If, in addition, we introduce a term 
like t?(bc((jk) that arises in CCSDT-1 from considering the contribution of T3 
to the TI equation, (a fifth-order term), we obtain CCSD(T).48 Both are 
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clearly correct through fourth order and should be an improvement over 
MBPT(4). In this manner much of the often important effect of T3 can be 
introduced without solving the full CCSDT equations, which is a substantial 
savings. Similar noniterative methods have been developed that include 
the initial T4 contributions and are correct through fifth order, CCSD + 
TQ"(CCSD) = CCSSD(TQ"),49 whose rate-determining step is a single n3N5 

step. 
Again recalling that unlike CI, CC methods are not variational, we can 

compare various CC methods with full CI and the prior approximations in 
Table 4. In terms of the energies, it is apparent that CC methods are closer to 
full CI than the corresponding CI or MBPT results, as must be clear from the 
theory. For example, CCSDT is closer than even CISDTQ. Even CCSD(T) is 
competitive with CISDTQ, yet the latter requires an n4N6Ni, computational 
dependence, while CCSD(T) is n2N4Nir with a single n3N4 step. Also, CISDTQ 
is still not extensive. Similarly, the extensive fourth-order MBPT methods, 
SDQ-MBPT(4), which is the fourth-order approximation to CCSD, and 
MBPT(4), which is the fourth-order approximation to CCSDT or CCSD(T), 
differ from the infinite-order methods by -5 millihartrees. Notice the improve- 
ment by a factor of better than 3 by CCSD compared to CISD and factor of 
-16 improvement of CCSD(T) compared to CISDT. Whereas triples are impor- 
tant in CC theory, their improvement in CISDT is small. Although Table 4 is for 
just the energy, the overall relative quality of the various methods tends to 

Table 4 Comparison of Mean Absolute 
Errors for Different Correlated Methods 
Versus Full CI for BH, FH, and H,O' 

Mean absolute error 
Method (millihartrees) 

CID 
CISD 
CISDT 
CISDTQ 

MBPT(2) 
MBPT(3) 

MBPT(4) 
MBPT(5) 

CCD 
CCSD 

SDQ-MBPT(4) 

CCSD (T) 

CCSDT 
CCSDT-1 

CCSSD(TQ * ) 
CCSDTO 

25.9 
22.0 
16.7 

27.8 
22.9 
11.3 

1.13 

5.89 
5.12 

7.06 
1.15 
0.96 
0.78 
0.44 
0.03 

12.8 

4ummary of data from Tables 1-3. 
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follow the errors shown. Hence we expect CCSD(T) > MBPT(4) > CCSD > 

The Brueckner orbital variant of CC should also be ment i~ned . ’~  CCSD 
puts in all single excitation effects via the wavefunction exp(T, + T2)Qo. We 
can instead change the orbitals {cp,} in Qo in this wavefunction until TI = 0. 
These orbitals are called Brueckner orbitals and define a single determinant 
reference B instead of Qo that has maximum overlap with the correlated wave- 
function. Since B-CCDs4 (or BD)” effectively puts in TI, it will give results 
similar but not identical to those from CCSD (they differ in fifth order). For 
BH, the corresponding B-CCD errors are 1.81, 2.88, and 5.55, compared to 
1.79, 2.64 and 5.05, for CCSD as a function of Re. See also B-CCD for 
symmetry breaking  problem^.'^ 

Quadratic configuration interaction (QCISD)I3 is an approximation to 
CCSD methods (it is also the same up to fifth-order terms) and will give similar 
results. Generally E(QC1SD) < E(CCSD) because the higher order nonlinear 
terms in CCSD tend to be positive. For the purposes of the present discussion, 
we do not need to consider it separately. The details and numerical results 
compared to full CI are presented in the Appendix. 

SDQ-MBPT(4) > CISD > MBPT(2). 

Numerical Results for Potential 
Energy Curves 
Besides FCI comparisons discussed above, correlated results for the N2 

and F2 potential energy curves are informative. Because of the importance of 
nondynamic correlation in correctly separating the N, potential curve to two 
N(4S) atoms, the reference result shown in Figures 8 and 9 is the MR-CI, which 
is the same as CASSCF-CISD. Recall from Figure 6 that the CASSCF solution is 
qualitatively correct as a function of R, so augmenting it with all the single and 
double excitations that can be formed from excitations among the 32 spin- 
adapted configurations in the CASSCF should be excellent (even though not an 
extensive) approximation to the FCI. In this case it consists of 77,558 configu- 
rations. For the correctly separating UHF-based correlated methods, all the 
purely single reference, purely dynamic correlation methods go to the correct 
asymptotic limit except for MBPT(2) (Figure 8). The characteristic spin con- 
tamination of the UHF that persists into the correlated calculations is apparent 
from the erroneous, too steep, curvature near 1.3 A. The latter is never allevi- 
ated by finite-order MBPT results, but is once the CCSD result has been ob- 
tained. That is, despite no explicit consideration of nondynamic correlation, 
UHF-CCSD offers a perfectly reasonable approximation to the N2 curve all the 
way to separation. Adding triples either noniteratively, CCSD(T), or com- 
pletely, CCSDT, provides results that follow the CASSCF-CISD curve very 
accurately. Notice that the CCSD(T) and CCSDT energies (along with 
MBPT(4)) are actually lower in the vicinity of equilibrium and, if we had the 
full CI result, would be closer to it than the CI. This reflects the remaining 
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Figure 8 Correlated potential curves for N, using a UHF reference. 

Figure 9 Correlated potential curves for N, using an RHF reference. 

98 



Methods for Electron Correlation 99 

inextensivity error even in a large CASSCF-CISD calculation. The CI still does 
not have all the benefit of triple and quadruple excitations, which is why most 
such calculations will still be augmented by a semiempirical estimate of the 
extensivity correction. It is clear from the above that whereas CC methods 
should be able to describe the curvature accurately, MBPT frequencies will 
suffer from spin contamination. 

Considering the RHF-based CC and MBPT methods (Figure 9), to obtain 
a reasonable curve, the CC and MBPT methods must overcome a reference that 
is incorrectly separating. From Figure 6 that means correcting for about 0.8 
hartree (or -500 kcal/mol!). The fact that CCSD(T) and CCSDT can largely 
do that is rather remarkable! In practice that means that CCSD and CCSD(T) 
are fairly good to about 1.5 A and CCSDT is nearly superimposable upon the 
CASSCF-CISD result until about 1.9 A. Once again near the minimum where 
UHF and RHF coincide, the many-body methods with triples have lower ener- 
gies. Here, finite-order MBPT shows the characteristic turnover that results 
when an energy denominator ei + ej  - E, - E~ approaches zero where ei + ei i= 

E, + E&, as some orbitals are exactly degenerate at separation. The denominator 
is negative, which causes the result to go to negative infinity. Unlike the UHF- 
based results, finite-order RHF-MBPT is qualitatively correct near equilibrium, 
however. 

Figures 10 and 11 show a similar set of curves for F,. Figure 12 shows the 
differences in dissociation energies. F, is complicated by its small dissociation 
energy and its unbound UHF solution. However, it is simpler than N, in that 
only a single bond is being broken. For single bond breaking, CC methods will 
not show the turnover observed for the N, RHF-based examples. Comparisons 
with the GVB-CISD = CASSCF-CISD demonstrate the general accuracy of 
nondynamic CC methods for single bond breaking. In particular, results from 
the simplest iterative triples model, CCSDT-lS2 (Figure 12) are in good agree- 
ment with the GVB-CISD at separation and better than those from its nonitera- 
tive counterpart, CCSD(T). As for N,, the many-body results give deeper min- 
ima and better dissociation energies for F, than does CASSCF-CISD. Here, of 
course, the CAS space consists of only two orbitals and the CI contains only 
6620 configurations. The RHF-MBPT curves still turn over (Figure lo), but 
farther out on the potential curve than for N,. Because of UHF’s qualitative 
failure for F,, UHF-MBPT shows no binding either (Figure 11). However, once 
again, CCSD and CCSD(T) provide qualitatively correct potential energy 
curves (Figure 12) although the former is too steep near 1.8 A as it is for N,. 

To summarize, CC/MBPT methods are usually more accurate near equi- 
librium geometries than are nondynamic correlated methods, but less accurate 
asymptotically. These two examples are extreme cases chosen to show failures. 
Correctly breaking a C-H bond in CH, or C-C bond in ethane is not too 
demanding for these methods. Because chemistry is mostly accomplished by 
breaking single bonds, most situations involving bond cleavage are amendable 
to single-reference CC methods. In particular, there are no particular problems 
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Figure 12 Correlated potential curves for F,. 

in the vicinity of equilibrium for most molecules, which is why even MBPT will 
usually give quite good answers. We will see many such examples in later 
sections. 

Basis Sets 

We have seen that the solution of the correlation problem within an 
“atomic orbital” (AO) basis set {x,} is given by the full CI. The full CI’s 
agreement with experiment for various properties is a function of the choice of 
basis set. Since the whole mechanism for introducing electron correlation is to 
allow the wavefunction enough flexibility to let electrons avoid each other, the 
contracted Gaussian basis must include spatial flexibility,” This is introduced 
by (1) having multiple s functions for atoms that have s electrons; p functions 
for atoms that have p electrons, etc., and (2) by including higher angular 
momentum functions like d functions for B, C, 0, N, F, p functions for H, f 
functions for the first-row transition series, etc., which are not normally re- 
quired for the conceptual bonding description involving that atom. Both addi- 
tions give extra flexibility to the wavefunction. Type (1) basis functions allow 
the correlated method to introduce “radial” correlation because we have extra 
flexibility in spatial regions along a bond in a molecule, while type ( 2 )  basis 
functions introduce polarization into the wavefunction and particularly allow 
for “angular correlation.” While such higher angular functions will also give 
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improved SCF results for molecules, they are critical to the treatment of elec- 
tron correlation for the obvious reason that d functions introduce areas of space 
that are not usually covered by s and p functions, and the more spatial flex- 
ibility, the better the electron correlation description. Similarly, f functions 
would introduce additional spatial flexibility, as would even higher angular 
momentum functions. Consequently we have to be concerned with the level of 
correlated theory and the quality of the basis set as shown in Table 5 .  The 
actual distance from the “truth” for a particular level of calculation and a 
particular property is a “calibration ” step, largely determined by comparing 
results from a given level of correlated theory and basis to experiment. Calibra- 
tion is discussed for several different categories of problems in later sections. 

The minimum level A 0  basis that is meaningful for ab initio correlated 
treatments is at least a 6-31G“:’ 6-31G““,59 or, better, DZP bask6’ The first 
two bases are in the GAUSSIAN program system, and the notation indicates 
that the core orbitals are represented by a single basis function involving a 
contraction of six Gaussian functions, while the valence s and p orbitals are 
described by two functions. The innermost, or least diffuse, function is a linear 

Table 5 Basis Set Versus Quality of Theory in ab Initio Calculations 
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combination of three Gaussians, while the outermost is represented by a single 
uncontracted Gaussian. The exponents of the primitive Gaussians are the same 
for the valence s and p basis functions. (Many programs routinely put all six of 
the Cartesian components of d functions like x2, y2, 22, xy, yz, xz into a 
calculation, and similarly 10 functions for f functions. The designation “spher- 
ical” limits the basis to the usual 5 d and 7 f functions.) The single asterisk (“‘) 
means that a set of six (Cartesian) functions is added to the heavy atom (i.e., B, 
C, N, 0, F), while the double (‘.‘.) means that a set of three p functions is added 
to all hydrogen atoms. Without the polarization functions, the basis sets (i.e., 
STO-3G, 4-31G, 6-31G, DZ, etc.) do not adequately include the most impor- 
tant physical effects of electron correlation. As a consequence, although there 
will be some energy reduction, the change will be relatively constant as a 
function of geometry or for ionization or excitation energies, etc., instead of 
introducing the physically significant differential effects of correlation. 

The double zeta (DZ) basis6’ means choose twice as many s and p con- 
tracted functions as are occupied in the ground state of the atom (i.e., 2 s for H, 
but 4 s for Li, and 2 p for B, C, N, 0, F). In practice we usually use 2 p for Be 
and Li, as well. The D Z  plus polarization basis (DZP) means add a set of six d 
functions to the heavy atom and a set of three p functions to H. Unlike 
6-31G““, there is no restriction to s and p contracted Gaussians having the 
same exponent, which gives the DZP basis additional flexibility. The primitive 
functions are not specified in the DZP designation, but usually the basis is 
derived from the 9s5p primitive optimized atomic Gaussian sets of Huzinaga.61 
This DZP basis (preferably with the polarization function exponents optimized 
at the correlated level for small molecules)62 is the simplest reasonable level and 
will be widely used for illustrative calculations in this chapter. Obviously we 
could add larger primitive sets from which to define a DZP contraction, with 
some marginal improvement. More generally, we can use a larger contracted 
basis like TZP,63 meaning 5s3pld per atom (triple zeta in valence region), 
TZ2P (5s3p2d), TZ2Pf (Ss3p2dlf), etc. We can use the same primitives or 
expanded sets. We can also add diffuse functions, which are sometimes indi- 
cated as 6-31G” ”+ +, for example. 

The recently developed atomic natural orbital (ANO)64365 and “correla- 
tion consistent” (ccPVDZ, ccPVTZ, ccPVQZ, . . . ) bases66 use a large number 
of primitives and then form a contraction guided by results of correlated calcu- 
lations. In the latter designation the P means polarization and the VDZ means 
“valence double zeta,” which translates into 3s2pld contracted Gaussians for 
first-row atoms, while PVTZ is 4s3p2dlf and PVQZ is Ss4p3d2flg, etc. Even 
with more extensive primitive sets, the PVDZ basis tends to be slightly inferior 
to a DZP basis. Another useful basis is the POL1 basis of Sadlej6’ determined 
to accurately describe polarizabilities. 

Note that for correlated calculations the number of primitive functions 
(n,) is not of great concern because that number affects only the integral time 
(an -tz: step), while the number of contracted functions M = tz + N deter- 
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mines the scale factor in correlated calculations, and that is greater than M5. 
[All the integrals do not need to be transformed for MBPT(2), so then we have 
-Mn2N2 integrals.] 

The larger the basis, the better the treatment of electron correlation. We 
cannot expect any monotonic convergence for most properties with either basis 
or correlated treatment, but larger basis sets and more correlation effects give 
methods that are “theoretically” more complete. However, the dimension of 
the basis is critical for post-Hartree-Fock calculations. For M contracted Gaus- 
sian (AO) functions, and n the number occupied, then M - n = N unoccupied 
spatial orbitals left over after the SCF calculation. In typical polarized basis 
correlated calculations, N is more than three times the dimension of n .  The cost 
of the SCF calculation is proportional to the number of primitive integrals 
(pvlh8) (i.e., -n;1/8) that have to be evaluated. (For sufficiently large mole- 
cules, strategies can be exploited to make the scaling more like -n$) Regard- 
less of what the correlated method is (CI, CC, MBPT, etc.), all such calculations 
start by transformating the A 0  two-electron integrals to the M O  two-electron 
integrals (+& I+&,). This requires a procedure proportional to - M5/4. Mo- 
lecular symmetry can be exploited to reduce the cost of integral evaluation by 
h, where h is the order of the point group, e.g., h = 8 for DZh, and the integral 
transformation by a factor of h2. CISD, CCSD and MBPT(3) require an n2N4 
step, while other widely used higher order methods like MBPT(4) and 
CCSD(T) are -n3N4. By using molecular symmetry, all such methods with the 
exception of MBPT(2) can be reduced by a factor of h2, which can result in a 
critical savings for large-scale correlated calculations.68 Despite the advantages 
of symmetry when applicable, the nonlinear dependence on A! (which even for 
a DZP basis is typically a factor 3-4 times n; for a TZP basis the factor is -5n 
and TZ2P, about -6n, etc.) seriously impedes our ability to do correlated 
calculations. Doubling the size of the basis set requires -23 as much computer 
time for MBPT(2), -24 for MBPT(3), CCSD or CISD and -25 for MBPT(4) or  
CCSD(T). 

The nonlinear dependence on basis size greatly limits either the size of 
molecule or the basis set in a correlated calculation. To help some, inner shell 
electrons, which are known to have little effect on the formation of chemical 
bonds, are frequently not correlated. This means that the lowest occupied 
orbital (largely the Is core AO) and the corresponding virtual orbital (Vls) are 
deleted from the basis before making the correlated calculation. For CH4, this 
saves just two functions, but for C6H6, it would be 12. Similarly, for systems 
containing heavier atoms like Fe, several lower orbitals like Is, 2s, and 2p can 
frequently be left uncorrelated without serious error. That usually means delet- 
ing the Vls, V ~ S ,  and V2p orbitals as well, because their primary function is to 
correlate the core orbitals; so 10 orbitals would be dropped from the correlated 
calculation. Most programs allow the automatic exclusion of such orbitals 
prior to the transformation for the correlated calculation. 
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Another option that reduces the number of functions, particularly when 
heavy atoms are involved, is the replacement of inner shell electrons by effective 
(or pseudo)  potential^.^^ Such procedures have been incorporated into many ab 
initio program systems including ACES 11. Since the core electrons are not 
explicitly considered, effective potentials can drastically reduce the computa- 
tional effort demanded by the integral evaluation. However, because the -n$ 
step is an inexpensive part of a correlated calculation, the role of effective 
potentials in correlated calculations is less important, due to the fact that 
dropping orbitals is tantamount to excluding them via effective potentials. An 
exception occurs when relativistic effects are important, as they would be in a 
description of heavy atom systems. Most such chemically relevant effects are 
due to inner shell electrons; their important physical effects, like expanding the 
Pt valence shell, can be introduced via effective potentials that are extracted 
from Dirac-Fock or other relativistic calculations on atoms.” Similarly, some 
effective potentials introduce some spin-orbital effects as well.” Thus, besides 
simplifying the computation, effective potential calculations could include im- 
portant physical effects absent from the ordinary nonrelativistic methods rou- 
tinely applied. 

MOLECULAR GEOMETRIES 

Because the concept of structure is central to chemistry, it is only natural 
that prediction of molecular geometries has historically been the most frequent 
area of application for quantum chemical methods. For the most part, these 
studies can be loosely grouped into two categories. In the first, rather general 
questions of structure are addressed, such as the point group symmetry of the 
molecule (e.g., is cyclobutadiene DZh or Other investigations are di- 
rected toward predictions of the fine details of structure (bond lengths, bond 
angles, torsional angles, etc.), and it is this second group we discuss here. 

Unlike some of the topics addressed in this chapter, the study of molecu- 
lar geometries does not force us to explicitly consider more than one electronic 
state. Hence, correlation effects do not involve unpredictable differential cor- 
relation between states, but rather only changes in the correlation energy as one 
moves along the potential energy surface. As it turns out, the qualitative effects 
of correlation on geometrical structures tend to be systematic. 

A definition of molecular structure is actually fairly complicated. For the 
most part, we tend to view this question from a classical perspective in which 
structure is defined by an arrangement of nuclei that minimizes the potential 
energy. The geometrical parameters that characterize these special points on 
the potential energy surface constitute an “equilibrium structure,” where forces 
on the atoms vanish (i.e., 6’E/6’Xa = 0 for all Cartesian coordinates XJ. This is 
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the geometry the molecule might assume in the absence of available energy. 
However, in the real (quantum mechanical) world, molecules are never at rest 
and molecular structure is a dynamical concept involving oscillations of the 
nuclear positions about equilibrium geometries. 

While quantum chemists typically calculate equilibrium geometries, ex- 
perimentalists can only measure average structures in a direct fashion. For 
example, rotational spectroscopy yields moments of inertia that are related to 
average geometries in specific vibrational states, whereas electron diffraction 
provides internuclear distances averaged over a statistical ensemble of vibra- 
tional and rotational states. Extraction of equilibrium geometries from experi- 
mental data is an exceedingly difficult task for all but diatomic molecules 
because the anharmonic force field of the molecule must be known. Reliable 
equilibrium geometries are available for several triatomic molecules and a scant 
number of larger systems. For the most part, however, differences between 
equilibrium and vibrationally averaged structures are small (50.01 A for bond 
lengths, 50.5" for angles), and it is therefore possible to make meaningful 
comparisons between theoretical calculations and experimental results, pro- 
vided we are careful. 

The determination of equilibrium geometries involves the location of 
minima on the potential energy surface. At such a point, all first derivatives of 
the energy vanish (i,e., there is no net force on the nuclei) and the matrix 
of second derivatives (the Hessian) has no negative eigenvalues. For small mole- 
cules (particularly diatomics and triatomics), the potential energy surface is of 
small dimension, and it is not difficult to locate stationary points. Even the 
relatively crude procedure of evaluating the energy over a grid of points fol- 
lowed by interpolation works well. However, as molecular size grows, the 
potential surface rapidly becomes complex and more sophisticated approaches 
are warranted. 

The intractability of simple energy-grid-based approaches is most easily 
communicated by means of an example. Suppose that one wanted to determine 
the equilibrium structure of 3-fluorotoluene. Even if C, symmetry is imposed, 
there are still 22 distinct degrees of conformational freedom for the molecule. 
Consequently, if we want to perform a Newton-Raphson step to improve the 
geometry, we will have to determine the 22 components of the gradient and 
253 unique Hessian elements. To calculate the derivatives with sufficient nu- 
merical accuracy, so-called double-sided differentiation must be used. (Such a 
procedure, which means taking equal +6, and -6, displacements for deriva- 
tives, removes the contaminating effects of the next higher derivatives and 
therefore improves numerical accuracy.) This would require that a grid of -500 
energy points be evaluated, which is clearly not a practical procedure! How- 
ever, a number of useful numerical techniques exist that allow us to estimate 
the Hessian, based on information from preceding geometry steps. Thus, it is 
practical to begin with a reasonable estimate of the Hessian and evaluate only 
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the first derivatives. Nevertheless, a numerical evaluation of the gradient by the 
double-sided method 

requires 44 energy calculations. 
The bottleneck in geometry optimizations alluded to above has yielded to 

one of the most important advances in quantum chemistry-the development 
of methods to calculate the gradient of the energy analyt i~al ly . ’~-~~ An efficient 
formalism for the calculation of SCF derivatives was developed more than 20 
years ago, and the first analytic derivative formulation for correlated methods 
followed a decade later. For the MBPT and CC approaches advocated by us, ana- 
lytic gradient methods have been implemented for all the computational levels 
typically used in practice-MBPT(Z), MBPT(3), SDQ-MBPT(4), MBPT(4), 
CCD, CCSD, CCSD + T(CCSD), CCSD(T), QCISD, and QCISD(T).7’-83 
The ACES I1 program system allows the routine calculation of gradients at all 
these levels for both RHF and UHF reference functions, while ROHF-based 
MBPT(2),80 CCSD,79 and CCSD(T)83 derivatives are also available. Other pro- 
gram packages permit analytic evaluation of UHF and RHF-based MBPT(2) 
derivatives and RHF-CISD, although no package other than ACES I1 has 
CC/MBPT gradient capabilities beyond MBPT(2). The GAUSSIAN program 
system is capable of evaluating gradients at the QCISD level. 

In general, analytic gradient calculations scale only weakly with the num- 
ber of degrees of freedom and typically require roughly 1-3 times the CPU time 
as the energy calculation itself. Gradients for SCF and correlated methods may 
be evaluated from the formula 

- aE = Tr ( - aH p )  + Tr ( - as Z )  
axa axa ax, 

where aHi/axa is a derivative of the Hamiltonian matrix 

1481 

for one of the 3N 
Cartesian coordinates, p is a suitably defined density matrix, aS/aXa are the 
derivatives of the overlap integrals, which serve to preserve the orthonormality 
of the wavefunction, and I is a one-particle-like quantity. 

For SCF methods, p represents elements of the one- and two-particle 
density matrices. In correlated methods, the one-particle part of p is the sum of 
the actual reduced density and a contribution that is proportional to the deriva- 
tive of the energy with respect to orbital rotations. For the MCSCF method, the 
orbitals are variationally optimum, and this latter term vanishes. Similarly, for 
FCI there is no orbital contribution. However, it is required for other CI, CC, 
and MBPT correlated methods, because the energy in these approaches is not 
stationary with respect to first-order changes in the molecular orbitals, This 
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latter term is said to account for “orbital relaxation,” and the composite p is 
called a “relaxed” or “effective” density. Hence, all gradient calculations con- 
sist of evaluating density matrices and I intermediates and contracting them 
with matrix elements of an appropriately differentiated operator. For SCF 
methods, construction of p and I involves negligible computational expense, 
and timings are therefore dominated by integral derivative evaluation, which 
typically requires about twice the CPU time as the calculation of undifferenti- 
ated integrals. 

For MBPT and CC methods, evaluation of the reduced density requires 
determining a response vector (A) as well as T. This defines a response density 
p’ = eTI@o)(@ol(l + h)e-? In addition, we want to allow the molecular 
orbitals to relax. The latter consideration adds another term, pf’, to the one- 
particle density. This “relaxed” density, p = p f  + p”, is the critical quantity in 
CC and MBPT analytical gradient (and property) methods.84 For just the one- 
particle part, we have p( 1 )  = p’(1) + p” = D(1) which will show up again when 
we discuss properties. 

For all methods besides MBPT(2) and MBPT(3), the evaluation of A 
requires a fair amount of additional computation. However, even for CC 
methods this step requires only about half the CPU time of the CC calculation 
itself. Hence, for calculations in which the integral evaluation time is negligible 
the ratio of timings between MBPT/CC energy and energy plus gradient calcu- 
lations is expected to be between -1:l  and 1:1.75. Thus, it may be seen that 
the availability of efficient analytic gradient methods greatly facilitates the 
study of potential energy surfaces. Indeed, the development of such techniques 
now seems to be a prerequisite for any method intended for use in chemical 
applications. 

The accuracy of molecular geometries predicted by the SCF approxima- 
tion has received considerable attention in the literature. On the whole, the 
neglect of electron correlation causes bond lengths to be underestimated, as 
seen in the basis set study for water in Table 6.  This statement about underesti- 
mated bond lengths applies to exact SCF calculations, namely those in which 
the basis set is complete. As seen in Table 6 ,  SCF calculations performed with 

Table 6 Optimized SCF Molecular Geometry Data 
for HzO as a Function of Basis Set 

Basis 

STO-3G 
3-21G 

6-31G* 
DZ 

DZP 
TZZP 
Experimental 

R,, 0-H (A) 0, H-0-H (degrees) 

0.989 100.0 
0.967 107.7 
0.95 1 112.5 
0.947 105.5 
0.944 106.6 
0.941 106.2 
0.957 104.5 
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poor basis sets often overestimate the distance between bonded atoms. The 
underestimation, of course, is a manifestation of deficiencies of the SCF model 
for potential energy surfaces discussed previously. In SCF calculations, the 
electron-electron repulsion terms are not treated properly, and electrons tend 
to bunch together too closely. This results in compact bonds with favorable 
Coulombic attractions between the electrons and nuclei. However, when inter- 
electronic repulsion is treated properly, the electrons move apart, which causes 
the bond lengths to increase. The overestimation of bond angles observed in 
SCF calculations for many molecules may be rationalized as a consequence of 
the considerations discussed above. That is, underestimation of the bonded 
distances causes an increased (and unfavorable) interaction between the non- 
bonded atoms. Therefore, bond angles increase. 

Another ubiquitous trend in SCF geometry studies, which is illustrated by 
the data in Table 6 is a marked inverse relationship between the quality of the 
basis set and the predicted bond lengths. In our water example, SCF bond 
lengths monotonically decrease from 0.989 A to 0.941 A as the basis set is 
improved from STO-3G to TZ2P. In water as well as many other molecules, 
small basis sets usually overestimate the experimental bond lengths, which are 
in turn longer than those obtained at the SCF level with extensive basis sets. 
Therefore, it is often possible to select a basis set of intermediate quality (DZ in 
the present example) which gives an accurate “prediction” of R,. This is an 
example of a Puuling point-a level of theory that provides better results than 
those obtained in more sophisticated calculations-and is due to the opposing 
nature of correlation and basis set corrections, which tend to increase and 
decrease bonded distances, respectively. [This situation should contrast with 
the calculation of excitation energies, in which both correlation and basis set 
effects tend to act in concert with improvements in both leading to lower values 
(see later).] Indeed, SCF geometry optimizations in a split-valence polarized 
basis set, such as 3-21G or DZ, have long been used to predict geometries of 
organic molecules. For the most part, this approach works reasonably well, 
because the errors tend to be highly systematic provided lone-pair electrons are 
not present. However, the results for our water example clearly illustrate that 
polarization functions are needed to predict bond angles, so one must exercise 
a certain amount of care in choosing basis sets for geometry optimizations. It is 
very difficult to predict the location of Pauling points a priori; instead one must 
rely on experience gained in studies of similar molecules. For example, one 
should not expect the equilibrium bond length of ozone predicted at the SCF 
level with a DZ basis set to be as accurate as that for the 0-H bond in water. 
Indeed, at the DZ-SCF level the equilibrium for ozone is predicted to be 
R,(O-0) = 1.259 A; 8 = 119.7”, as compared to the experimental results of 
1.272 and 116.8”, respectively. Whereas our experience for water is consis- 
tent with the overestimation of the bond angle with this unpolarized basis set, 
the error in bond length (-0.012 A) is about twice that found for water 
(-0.006 A). 
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The only reliable way to obtain molecular structures that converge to- 
ward the correct result is to use increasingly larger basis sets and more com- 
plete treatments of electron correlation. For water, the results of calculations 
using a variety of basis sets (STO-3G, 3-21G, DZ, 6-31G", DZP, and TZ2P) 
and computational methods [SCF, MBPT(2), CCSD, and CCSD(T)] are listed 
in Table 7. The equilibrium bond lengths and bond angles predicted by these 
calculations clearly demonstrate the trends discussed above, namely the ten- 
dency for electron correlation to increase bond lengths (and by consequence 
reduce bond angles), while basis set expansion exhibits the opposite behavior. 
Nevertheless, the magnitudes of the changes are relatively modest once a rea- 
sonable level of theory has been surpassed, such as MBPT(2) with the DZP 
basis set. 

Having results obtained at a few correlated levels with different basis sets, 
it is usually possible to estimate the direction of the residual error with a fair 
degree of confidence. As an example, let us consider water once again. Because 
water has a well-isolated electronic ground state and no significant nondynami- 
cal electron correlation effects, the CCSD(T) approximation should provide a 
nearly quantitative treatment of correlation. Hence, the error in our most so- 
phisticated calculation [CCSD(T) with the TZ2P basis set] should be due al- 
most entirely to deficiencies in the basis. The structure obtained in this calcula- 
tion [ R e  (O-H) = 0.959 A and 8 = 104.2'1 is therefore expected to have an 
overestimated bond length and underestimated bond angle, as verified by com- 
parison with the experimental values. 

In Table 8, we list errors in bond length (A) and bond angles (degrees) 
calculated at various correlated levels with a DZP basis set for a set of mole- 
cules. The equilibrium geometries of the systems studied here have been reason- 
ably well determined experimentally, so comparisons between the present 
values and the experimental results are relevant. 

The effects of correlation (Table 8) exhibit the same qualitative behavior 
we have noted for water. (One should note that the rationalization provided for 
the behavior of the bond angle in water does not apply to formaldehyde, 

Table 7 Optimized Geometries (in angstroms and degrees) for H,O as a Function 
of Basis Set 

SCF MBPT(2) CCSD CCSD(T) 

Basis Re 0 Re 0 Re 0 Re 0 

STO-3G 0.989 100.0 1.013 97.3 1.028 96.8 1.028 96.8 
3-21G 0.967 107.7 0.989 105.2 0.993 104.9 0.994 104.8 
DZ 0.951 112.5 0.979 110.5 0.979 110.3 0.980 110.3 
6-31G4 0.947 105.5 0.969 104.0 0.969 104.0 0.971 103.9 
DZP 0.944 106.6 0.963 104.4 0.961 103.7 0.962 103.6 
TZ2P 0.941 106.3 0.958 104.2 0.956 104.5 0.959 104.2 
Experimental 0.957 104.5 
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because variation of the H-C-H bond angle involves changes in three distinct 
nonbonded interactions.) Due to the nature of the basis set used in these 
calculations, the bond lengths obtained with the most sophisticated treatment 
of correlation [CCSD(T)] are systematically longer than the experimental 
values. Absolute errors in bond length are largest for multiple bonds (CN, CC, 
and CO) at both the SCF and correlated levels. Assuming that the majority of 
error in the CCSD(T) results is due to basis set deficiencies, this observation 
suggests that both basis set and correlation effects are more pronounced for 
multiple bonds than for single bonds as discussed previously. The basis set 
sensitivity results from the more pronounced correlation effects, because larger 
basis sets provide a more flexible set of the virtual orbitals required to describe 
correlation. This reflects a statement made early in this chapter. To paraphrase: 
when correlation effects are important, a large basis set is needed to describe 
them properly! This is one of the important messages we are trying to convey. 

We conclude this section with a brief discussion on a related topic-the 
optimization of transition state structures at the correlated level. In these calcu- 
lations, the stationary points of interest are those that have precisely one signifi- 
cant negative eigenvalue of the Hessian matrix. Such points always represent 
the energy maximum along a minimum energy pathway linking two local 
minima on the potential energy surface. Points with more than one negative 
eigenvalue never represent transition states because there is always a lower 
energy path between the minima. In some sense, these other points (which are 
only of academic interest) represent transition states between transition states. 
Location of saddle points on potential energy surfaces is more difficult than 
finding local minima. However, a number of clever algorithms have been devel- 
oped in the past decade.88389 

As chemical reactions proceed via pathways that are either allowed or 
disallowed by orbital symmetry  consideration^,^^ studies of transition states 
may also be broadly categorized in this way. In the former case, orbitals of the 
reactants map smoothly into those of the products and MBPT/CC calculations 
based on a single determinant reference should therefore be appropriate for 
studying the reaction pathway. However, for “forbidden” reactions, the region 
of the potential energy surface near the transition state is usually very poorly 
described by a single determinant starting point, and multi-reference-based 
methods are warranted. Many interesting chemical reactions (particularly 
those with low barrier heights) are allowed by orbital symmetry, and the single 
reference correlated methods discussed in this chapter may readily be applied 
to a study of these reactions. 

A prototypical example of a transition state amenable to single determi- 
nant MBPT/CC methods is the unimolecular dissociation of formaldehyde 

which has been the subject of a number of theoretical and experimental studies. 
Structural parameters of the transition state calculated with a DZP basis and a 
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Table 9 Internal Coordinates (in angstroms and degrees) for the Transition State 
in the Decomposition of Formaldehyde 

Correlation 

SCF 1.151 1.102 1.583 112.5 49.4 
MBPT(2) 1.192 1.096 1.596 111.6 50.7 
CCSD 1.188 1.094 1.595 110.2 51.4 
CCSD(T) 1.193 1.092 1.621 110.3 52.2 

treatment R(CO) R(CHi) R (CH& 0(OCH,) e(H,CH,) 

number of different treatments of correlation are listed in Table 9. For topologi- 
cal features of molecules that are common to both reactants and products, the 
considerations of basis set and correlation effects discussed earlier in this sec- 
tion still apply. For example, in the formaldehyde decomposition reaction, the 
C-0 bond length increases from 1.151 A to 1.193 A as the level of theory is 
increased from SCF to CCSD(T). The magnitude of this expansion (0.042 A) is 
comparable to that found for the C-0 bond in ground state formaldehyde 
using the same basis (0.035 A). However, the simple systematic behavior we 
have observed for ground state structures usually does not hold for bonds that 
are broken or otherwise transformed by the reaction. In this transition state, 
for example, the two C-H distances behave quite differently as the treatment 
of correlation is improved. With respect to the SCF structure, the distance 
between the carbon and the proximal hydrogen actually decreases by 0.010 A 
while the other C-H distance increases by 0.038 A at the CCSD(T) level. 

VIBRATIONAL SPECTRA 

For rigid molecules, energy differences between the ground and singly 
excited vibrational states are relatively small with respect to barrier heights on 
the potential energy surface. Hence, the nuclei tend to undergo only small- 
amplitude vibrations about their equilibrium positions in both the ground and 
excited states and therefore do not sample a large region of the potential 
surface. As a result, the part of the potential energy surface that governs these 
states and the transitions between them can be reasonably approximated by the 
potential function of a multidimensional harmonic oscillator. In the theory of 
vibrational spectroscopy, this “harmonic” approximation plays a role similar 
to that of the Hartree-Fock approximation in electronic structure theory. Both 
these simplifying approximations lead to separable and therefore exactly sol- 
uble Schrodinger equations, the solutions of which (“normal” vibrational 
modes and molecular orbitals, respectively) represent useful paradigms for our 
understanding of the respective phenomena. However, we must be careful to 
remember that both normal coordinate theory and molecular orbital theory are 
approximations, and exact calculations must go beyond these models. 
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Because of the properties noted above, most quantum chemical studies 
of vibrational frequencies are carried out within the “doubleyy harmonic ap- 
proximation (i.e., using only second derivatives for the force constants and 
the derivative of the dipole moment for the intensities; see below). This neglects 
the so-called mechanical and electrical anharmonicities. As is the case for 
theoretical predictions of molecular structures, we must once again be careful 
when comparing experimental and theoretical results. In structural predictions, 
one is usually forced to compare equilibrium geometries obtained by theory to 
some sort of averaged geometry obtained from experiment, whereas vibrational 
calculations produce harmonic frequencies that do not include anharmonic 
effects. Hence, to rigorously assess the quality of harmonic force fields obtained 
theoretically, it is necessary to compare results to “experimental harmonic 
frequencies.” We believe that the difficulty of obtaining harmonic frequencies 
experimentally is not as widely appreciated among the quantum chemical com- 
munity as it should be. Indeed, the amount of information required to deter- 
mine harmonic frequencies from experimental data is the same as that needed 
to determine the equilibrium geometry. Therefore, the number of systems for 
which accurate harmonic frequencies have been determined is even smaller 
than that for which the equilibrium geometry is known with precision. The 
point of this section is to assess how accurately different quantum chemical 
methods can predict harmonic frequencies, so we will concern ourselves pri- 
marily with such systems. 

The quantities we require in a calculation of harmonic vibrational fre- 
quencies are the second derivatives (i.e., the force constants) of the electronic 
energy with respect to nuclear displacement, 82E/8qa8qp. In terms of Cartesian 
coordinates there are 3N such terms, for N atoms. Elimination of translational 
and rotational degrees of freedom gives the familiar 3N - 6 ( 5 )  independent 
nuclear coordinates. We refer to the force constant matrix as the Hessian 
matrix. The eigenvalues of the Hessian matrix must all be positive at  a mini- 
mum energy geometry, while at a transition state (which corresponds to a 
saddle point), one will be negative. The corresponding eigenvector identifies the 
reaction path, while the remaining eigenvalues are positive. Operationally, we 
can evaluate second derivatives of the electronic energy in one of three ways: 

1. Obtain the energy at several points and determine the second derivatives 
from numerical second derivatives. If we insist on “double-sided” numeri- 
cal differentiations, which is recommended because it benefits from elim- 
inating any third-derivative contaminant, we require E ( 0 )  and E( &6q,) for 
each Cartesian displacement, 6q,. Clearly, symmetry can be used to reduce 
the number of calculations by replacing qa by symmetry coordinates (&). 
This is done automatically in ACES 11. 

2. Evaluate the gradient to provide analytic first derivatives {aElaq,} from 
which a2E:/dqaaqp can be obtained by a displacement in +6qp. Again, 
symmetry can be exploited to reduce the number of gradient evaluations. 

3. Evaluate the second derivative matrix analytically. 
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Each level is more efficient and numerically accurate than the preceding 
one. For most polyatomic molecules, ab initio calculations using approach 1 
are not feasible because of the large number of independent degrees of freedom: 
they require roughly (3N - 6 )  x (3N - 5)12 x 2 energy calculations. Ap- 
proach 2 is used for many applications of interest at correlated levels. Approach 
3 is readily used in SCF calculations, and although some attempts have been 
made for MCSCF, CI, and CCSD methods; in practice, correlated analytical 
Hessians have been largely limited to MBPT(2).91v93 Analytic MBPT(2) Hes- 
sian evaluation for RHF,” UHF,92 and ROHF93 reference functions have now 
been presented and will be available in ACES 11. 

At uncorrelated levels, the frequently incorrect separation of the RHF 
wavefunction or spin contamination in a UHF solution will cause too large a 
curvature, illustrated in the diatomic potential curves discussed earlier. Hence, 
SCF will normally overestimate the second derivatives, causing the resultant 
harmonic frequencies to be too high. (Note that pathological situations, such 
as the UHF curve for F, and “symmetry breaking” where the RHF, ROHF, or 
UHF solution for some small displacement fails to connect to that at the higher 
symmetry point, have to be recognized. The latter frequently prohibits calculat- 
ing second derivatives with finite displacement, although analytical second 
derivatives can be obtained at the high symmetry point.) The SCF-predicted 
frequencies are found to be about 10% above the fundamental vibrational 
frequencies observed experimentally, recommending an empirical scaling factor 
of 0.9. Some workers use different scale factors for different frequency modes 
(symmetric stretches, asymmetric stretches, bends, etc.) or applied to the force 
constants for these modes. We show the differences between experimental har- 
monic frequencies and DZP basis SCF theory for several ordinary closed-shell 
molecules in Table 10. Also in Table 10 are results from several different levels 
of electron correlation. Any level of electron correlation reduces the SCF error 
to about 5%. (In this table, the “experimental” values correspond to actual 
harmonic frequencies, but the reader should remember that these are rarely 
available for polyatomic molecules.) Most of the error is recovered at the 
simplest MBPT(2) level, with more modest improvements at higher levels. 

In terms of computational requirements, MBPT(2) is a highly applicable 
level of correlated theory. The results are somewhat better than the infinite- 
order CISD. Unlike CISD, MBPT(2) is an extensive method, and that means 
that even though it corresponds to the first iteration of CISD, it is also the first 
iteration of CCSD, and it tends to give results closer to those for CCSD than for 
CISD. Second, as discussed previously, MBPT(2) tends to overestimate bond 
lengths and angles compared to experiment. Because longer bonds tend to 
diminish the force constants, MBPT(2) vibrational frequencies usually move 
closer to experimental values. That, together with the ready availability of 
analytical Hessians, makes MBPT(2) a highly useful method for extensive (!) 
applications to molecules. 

Concerning the scaling of the SCF frequencies, another point should be 
made. An implicit assumption underlying the use of empirical scaling factors is 
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that the order of the vibrational frequencies is correctly predicted at the SCF 
level. However, for many molecules, correlation effects interchange the order, 
as illustrated by C,H, in Table 10. Experimentally, the w7(blu)  mode has a 
higher frequency than ws(b2u), but SCF has the reverse ordering. MBPT(2) and 
all higher correlated levels have the correct order. This also seems to be a 
characteristic of several proposed nitrogen analogs of cyclopropane and cyclo- 
pentadiene, N3H394 and NsH,95 where the SCF order (and intensities) are 
significantly changed at the MBPT(2) level. MBPT(2) is not always right, how- 
ever, as unwarranted changes from SCF for the open-shell OCBO molecule96 
were rectified at higher order CC levels. 

In addition to the frequencies, the infrared intensities may be determined 
by evaluating dpi/dX, where pi is a component of the dipole moment and X, is 
a Cartesian nuclear displacement. The dipole moment itself can be viewed as 
the gradient of the electronic energy with respect to an electric field ei (see later 
discussion of molecular properties), so dpi/dX, = d2EldeidX, requires a cross- 
second derivative. Just as for force constants, analytical evaluation is preferred 
and is now routine for MBPT(2). For higher correlated methods, analytical 
evaluation of pi from the relaxed density at finite nuclear displacements is used 
to obtain the intensities. Whereas the calculated frequencies only are subject to 
the accuracy of the energy as a function of displacement, intensities are more 
sensitive to diffuse regions of the electronic density through the dipole matrix 
elements, placing greater demands on the quality of the basis 

Mean absolute errors for IR intensities determined from the standard 
molecules discussed above are shown in Table 11 for different levels of approx- 
imation and a DZP basis. Of course, errors for relative intensities are much 
smaller. 

Once again, it appears that for a modest basis set like DZP, MBPT(2) is 
on average about as good as more sophisticated correlated methods. This does 
not necessarily follow once the basis has been improved, however. To illustrate 
this we present frequencies and intensities with DZ, DZP, and TZ2P basis sets 
for H,O in Table 12. As the level of correlation and basis are improved, there is 
a fairly regular convergence toward the experimental values. In particular, 

Table 11 Errors in Intensities at Various 
Levels of Theory (DZP Basis)” 
~~ ~~ 

Method Mean absolute error (%) 

SCF 96 
MBPT(2) 41 
CISD 47 
SDQ-MBPT(4) 34 
CCSD 41 
MBPT(4) 40 
CCSD (T) 34 

UExtraaed from same references as in Table 10. 
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Table 12 Vibrational Frequencies (cm-1) and Intensities (km mol-I) for H,O 
as a Function of Basis Set 

DZ 
SCF 
MBPT(2) 
SDQ-MBPT(4) 
CCSD 

DZP 
SCF 
MBPT(2) 

CCSD 
CCSD(T) 

TZ2P 
SCF 
MBPT(2) 

SDQ-MBPT(4) 

SDQ-MBPT(4) 
CCSD 
CCSD(T) 

Experimental 

4028 1711 4204 3.4 135.8 65.0 
3674 1624 3872 0.4 100.4 27.0 
3668 1638 3848 1.7 95.1 15.3 
3653 1639 3831 2.2 93.6 13.0 

4164 1751 4287 20.5 108.0 73.8 
3909 1664 4055 4.5 80.9 45.6 
3905 1687 4020 5.9 65.8 30.7 
3898 1687 4012 5.6 65.9 29.8 
3879 1681 3994 4.3 63.5 26.6 

4133 1752 4237 20.9 88.0 98.7 
3864 1653 3987 10.6 61.6 77.5 
3883 1678 3991 8.0 62.7 61.3 
3886 1679 3991 8.0 63.4 61.0 
3848 1670 3955 6.4 60.1 56.1 
3832 1649 3943 2.2 53.6 44.6 

larger basis sets with higher level correlated methods generally show significant 
improvement over MBPT(2). In the case of the symmetric stretch mode w, the 
small “experimental” value for I, is likely to be as much in error as the calcula- 
tion, so the error value might not be too meaningful. In fact, several other 
“experimental” values are available for these intensities. 

Table 13 shows a few more examples of results using a larger TZ2Pf 
basis,99 that contains f functions.’00 The average error for CCSD(T) results for 
frequencies is 0.7%, while the intensities have an average absolute error of 16%. 

The customary accuracy of MBPT(2) has now been extended to purely 
analytical second-derivative methods for open shells using UHF93 or ROHF 
reference functions. The latter requires some new (noncanonical MBPT/CC) 
theory recently d e ~ e l o p e d . * ~ ~ ~ ~  As discussed previously, unlike ROHF, which is 
an eigenfunction of spin for high spin cases, UHF reference functions can 
sometimes suffer from spin contamination. For low order correlated methods 
like MBPT(2) (unlike CCSD, e.g.), the UHF spin contamination can drastically 
affect the answers obtained. 

As an example, consider the methylene imidogen molecule, CH2N.93 
This system, which is isoelectronic with the vinyl radical, has a multiplicity 2 s  
+ 1 = 2.256 at the UHF level. Its vibrational frequencies are shown in Table 
14.”’ There are several messages in Table 14. First there are differences be- 
tween UHF and ROHF of -200 cm-1 for w2 and -100 cm-* for w3 and w6. 
Second, the order of the w5 and w6 frequencies is interchanged. Third, the 
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intensity distribution between the w2 and w3 mode is vastly different. Once 
we have performed an MBPT(2) calculation, the UHF-MBPT(2) multiplicity is 
still poor (2s + 1 = 2.203), but ROHF-MBPT(2) does not suffer from this 
failing. We see drastic changes of -400 cm-1 for the w2 mode and -200 cm-1 
for w6 between the two approaches. The usefulness of a method depends on 
how rapidly it converges to the full CI solution, and as we have seen, CCSD 
and CCSD(T) go a long way toward the full CI. From the data in Table 14, 
therefore, it is clear that ROHF-MBPT(2) is much closer to the CCSD and 
CCSD(T) results, differing by only 12-26 cm-1 for w2 and 2-27 cm-1 for 0,; 
and intensity for w2 is 3.8 versus 2.0 and 3.0. Notice that the CCSD and 
CCSD(T) results scarcely change with the choice of reference function. The 
reason is that CCSD and higher CC methods benefit from the orbital property 
of Eq. [53], below, making the methods relatively independent of orbital 
choice. [This feature makes it possible to use quasi-restricted Hartree-Fock 
orbitals (QRHF) in CCSD calculations, when the orbitals are taken from a 
different system and are not at all the optimum set for the problem.] As the 
failing of UHF-MBPT(2) is largely due to spin contamination, we can also see 
this from noting that the UHF-CCSD 2 s  + 1 = 2.018, which is close to a 
perfect doublet. 

The new development of ROHF-MBPT(2) analytical Hessians offers an 
important tool for the theoretical description of vibrational spectra but it, too, 
is not a panacea. Although ROHF does not suffer from spin contamination, 
ROHF does tend to localize unpaired electrons in unphysical ways, which 
can cause it to offer a poorer reference than UHF for such problems. A case in 
point is the '2, C4 molecule, where UHF-MBPT(2) is superior to the ROHF- 
MBPT(2) description. 

One final informative example is offered by the O3 molecule. As discussed 
0, possesses resonance structures and biradical character, which usually rec- 
ommends at least two reference functions in its zeroth-order description. We 
can expect this to be a demanding case for single reference methods,lo2 al- 
though multireference methods have their own problems. These results are 
presented in Table 15. 

The first observation is that the single determinant RHF-SCF harmonic 
frequencies have an average error of 19% instead of the usual -10%. A two- 
reference (2R or  GVB) CI would appear to offer a more correct de~cription,"~ 
and, although it seems to significantly reduce the error for the symmetric 
stretch (wl) and bend (wJ, it is still substantially in error for the asymmetric 
stretch (w3), which causes an average error of 12%. In addition, the 2R-CISD 
calculation gives the wrong order of the levels, having w3 > wl. The CASSCF (9 
orbital, 12 electron) calculation regains the relative order while underestimat- 
ing each frequency. 

The usually reliable MBPT(2) method shows its customary agreement for 
the two symmetric stretch modes in Table 15 but badly exceeds the asymmetric 
stretch frequency w3. MBPT(4) improves on w3, but still overestimates its value, 



Vibrational Spectra 123 

Table 1.5 Vibrational Frequencies (cm-I) of 0, 
at Various Levels of Theory (DZP Basis)u 

~~ 

Method "1 0 2  "3 

SCF 1547 859 1428 
2R-CISDb 1234 745 1352 
CASSCFc 1098 689 989 

MBPT(2) 1167 739 2373 
MBPT(4) 1123 695 1547 

CCSD 1256 748 1240 
CCSD + T(CCSD) 1097 685 12% (327)d 
CCSDT-1 1076 674 680 
QCISD(T)= 1128 697 934 
CCSD(T) f 1129 703 976 
CCSDT-2K 11-58 712 1182 
CCSDT-3f 1149 707 1118 
CCSDTf 1141 705 1077 
Experimental 1135 716 1089 

.Results from reference 102 except as Indicated. 
bReference 103. 
.Reference 104. 
d A  nonirnaginary result IS obtained in a larger (Ss4p2d) basis. 
"Reference 105. 
(Reference 106. 
XReference 107. 

causing the wrong ordering of levels to persist. The infinite-order effects in 
CCSD correct the ordering and reduce the average error to be below 10%; but 
when estimates of triple excitations are introduced, the agreement can worsen. 
The noniterative triples correction CCSD + T(CCSD) even gives an imaginary 
frequency for o3 that would imply that O3 does not have CZv symmetry! 
Though not imaginary, the iterative CCSDT-1 method gives an unreasonably 
low value for 03. The CCSD(T) noniterative approximation to CCSDT-1 gives 
a much better value and the correct order, whereas the QCISD(T) approxima- 
tion to CCSD(T) is slightly worse. If we add even higher order terms, which 
would define the iterative model, CCSDT-2, we get relatively good agreement 
overall, except the order of o3 and w1 is wrong. CCSDT-3 with still higher 
order triple contributions is good. Finally, the full CCSDT method gives excel- 
lent (too good!) agreement (< 1 % error) with experimental harmonic frequen- 
cies. CCSDT is an n3N5Ni, procedure, so it is not yet suited to large-scale 
application. It is, however, the reference point for all other less expensive triple 
excitation approximations in CC theory, and it is clear from this example that 
results for difficult cases can hinge on small, usually negligible contributions. 
Furthermore, we expect that the DZP basis used in this study makes the 
CCSDT agreement with experiment partly fortuitous. Much larger basis 
CCSD(T) results increase the frequencies by 23, 31 and 62 cm-l,"* which 
suggests that CCSDT in a larger basis would overshoot by a like amount. 
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The primary problem in O3 seems to be that the asymmetric stretch intro- 
duces two singly excited configurations that are forbidden by symmetry from 
mixing into the symmetric rnodes.'O2 This causes the multireference (non- 
dynamic) character to be worse for asymmetric stretches. Only at very high levels 
of purely dynamic correlation are all these factors properly handled in 03. 

An example of the removal of the harmonic force constant approximation 
is a study of the quartic force field for H20 at various CC, MBPT, and CI 
l e ~ e l s . ' ~ ~ ~ ~ ~ ~  The energy of 18 vibrational levels are correctly described to 
within 18 cm-1, and, with an empirical correction, to within 6 cm-1 at the 
CCSDT-1 level.'" 

PHOTOELECTRON SPECTRA 

Ionization Po ten tials 
Photoelectron spectra concern energy changes involved in the process 

hv + M ( Q )  - M + ( Q ' )  + e -  + KE(e-)  [501 

where Q indicates the quantum state of M and Q' that for M', and KE(e-)  is 
the kinetic energy of the ejected electron. For N, in its ground state 

tron from the IT, orbital, the 3ug, or any other. It usually requires X-ray 
energies to eject electrons from inner shell orbitals, so we usually speak of XPS or 
ESCA for inner shell ionization and ultraviolet photoelectron spectroscopy, UPS, 
using less energetic UV photons for the valence shell. The SCF independent 
particle model readily gives an approximate interpretation of the ionization 
potential for an electron via Koopmans' theo~em.~ This assumes that the state of 
the ion can be approximated by simply deleting an electron from the relevant 
orbital in the original SCF solution lcore 3 u g 3 6 g 1 n , ~ 1 ~ , x 1 ~ u y l ~ u y ~  to give, for 
example, either /core 3 o , l ~ r , ~ l ~ , ~ l n ~ ~ l i i ~ ~ /  or /core 3ag36g1n,x1f?uxl~,y~. It is 
assumed that the orbitals do not change from their form in the neutral species. If 
we work out the energy expectation values for M and M +  within this approxima- 
tion, we find that 

I +  Z, ( l a ~ l a $ 2 ~ ~ 2 ~ $ 3 a ~ l n ~ ) ,  Eq. [50] might correspond to removing an elec- 

n- 1 n- 1 

. .  
i= 1 1.1 
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where ek is the orbital energy associated with orbital k in the canonical SCF 
approximation, 

This, in fact, gives meaning to the orbital energies of an SCF calculation and is 
often used as a justification for the M O  (instead of valence bond) model of 
electronic structure. 

There are two approximations in interpreting ei as the negative of an Ip: 
(1) the MOs for the ion are not allowed to change (i.e., there is no relaxation), 
and ( 2 )  there is no difference in the correlation energies of M and M+. However, 
correlation will lower the energy of M relative to M + ,  simply because M has 
one more electron to correlate with all other electrons. As a result, correlation 
effects will tend to increase the ionization potential. On the other hand, admit- 
ting orbital relaxation will tend to lower the energy of M+ relative to M, 
diminishing the I,. In many cases these two factors fortuitously cancel for 
valence electrons, with Koopmans’ theorem offering a reasonably good measure 
of the actual I,. However, for other cases this is untrue, and N2 is a well-known 
example. From Table 16 we see that Kooprnans’ theorem gives the wrong order, 
as the lowest Ip experimentally corresponds to ionization from the 3a, orbital 
instead of the 1 ~ ”  highest occupied molecular orbital (HOMO). 

For core ionization the approximate cancellation that makes Kooprnans’ 
theorem work clearly does not apply because ejecting an electron from the core 
causes a much greater degree of orbital relaxation error. The effect of a core 
electron is to decrease the effective nuclear charge (via screening) by one unit. 
This causes large changes in the M +  MOs. Furthermore, correlation effects are 
dominated by the valence electrons. The appropriate solution for SCF treat- 
ments of core ionization requires separate SCF calculations for M and M + ,  
which is called AEscF. Such values are shown in the RHF-UHF column in Table 
16. Though there is no correlation in either calculation, the core relaxation 
effect accounts for an enormous improvement (7.34 eV). For the valence ioniza- 
tions, though, this is not as pronounced, although the results are improved over 

Table 16 SCF Vertical Ionization Potentials (eV) of N, (5s4pld Basis)”,b 

configuration AESCF (Kooprnans) A E S C F  Experimental 

3 5 ’  15.69 17.27 15.96 15.5 
1P;l 15.34 16.78 15.42 16.8 
2a; 19.95 21.12 20.15 18.6 
la,’ 419.46 426.80 409.9 

Leading RHF-UHF RHF-QRHF RHF-ROHF 

~~~~ ~~ ~ ~ ~~~ ~ 

0RHF-UHF refers to a calculation for which the ground state calculation IS based on an RHF 
reference and the ionic state calculations on a UHF reference. RHF-QRHF indicates that the ionic 
calculations are based on a QRHF reference (i.e., the orbitals for the ion are the same as the 
neutral), and RHF-ROHF indicates that they are based on an open-shell RHF reference function. 

bReference 112. 
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Koopmans’ theorem. However, the order of the AESCF level is still erroneous. 
(Much better results are offered if the core ionized state is described by a 
broken symmetry SCF solution that corresponds to an “atomic” 1s-type core 
hole, rather than ejection from the la, MO.) 

To improve on both SCF approximations, correlation is essential. Such 
results are shown in Table 17. Note that correlation effects amount to more 
than 1 eV for the valence ionizations, which also corrects the order, while the 
effect on the core ionization is about 8 eV. 

The simplest way to introduce correlation into ionization potentials is to 
compute E(M)  and E ( M + )  with some correlated method. (For a molecule, if the 
energy difference is computed at the geometry of M, we obtain vertical ioniza- 
tion energies; or if we allow M +  to relax to its optimum geometry before 
evaluating its energy, we get adiabatic ionization energies where zero-point 
vibrational energy differences are ignored.) Provided the correlated method is 
applicable to open and closed shells, this approach has the advantage that 
nothing new is required to calculate ionization ionization potentials beyond 
that needed to evaluate energies. Because such routine, widely applicable 
methods are usually built on a single determinant, independent particle refer- 
ence, this is usually possible for the lowest (i.e., HOMO) ionization potential of 
closed-shell neutral molecules, or, in fact, for any ionization from a closed-shell 
system where the electron is ejected from the highest orbital of a particular 
symmetry. 

In our N2 example, energies corresponding to ionization from the 1nU, 
3ug, or 20, orbitals can readily be obtained by such an approach. The reason is 
that the independent particle Hartree-Fock solution for the ion, whether it is 
UHF or ROHF, is readily converged to such states and correlated calculations 
can be carried out straightforwardly. Such results for N2 are shown in Table 17. 
However, it is more difficult to describe an ionized state where the electron has 
been ionized from an orbital of the same symmetry like the 20, (or la,) that is 
lower in energy than another, as shown in Figure 13. The reason is that it is 
more difficult to converge a “hole” state of the ion. Remember, Hartree-Fock 
methods are intended to provide the lowest possible energy for a single deter- 
minant, independent particle wavefunction. That is obtained when the SCF 

lL 3a, 

P lL 1% 

lL 2% 

2 2u, 

lL 10, 

lL la, 

Figure 13 Orbital diagram of N,. 
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procedure interchanges orbitals 3ag and 2ug, to give the 2ai3ai occupancy 
instead, but that is just the HOMO ionized state. If this happens, we do not 
have an appropriate reference function to study the second ionization. 

Certain algorithms can sometimes be used to force convergence to this 
hole state (that is how the lug-, level is obtained in Tables 16 and 17), but it 
would be better to avoid the SCF hole state calculation altogether. In particular, 
it is conceptually and operationally appealing if all ionized states are described 
in terms of the same set of reference orbitals, namely those for the neutral, 
while occupying them as needed for the various possible principal ionizations. 
This means that we will describe the 2a, ionization in our example by ]core 
2 u g 2 a ~ 3 0 ~ l ~ ~ ~  which we call a quasi-RHF, or QRHF wavefunction, because 
this is clearly not the energetically optimum determinant. This choice follows 
the spirit of Koopmans’ theorem and does not allow the ionized state orbitals 
to relax. 

Yet, we pointed out earlier that neglect of relaxation effects causes impor- 
tant errors. How do we resolve the apparent dilemma? CCSD gives us a solu- 
tion. The role of exp(T,) in CCSD and further generalizations of CCSD like 
CCSD(T), CCSDT-1, and CCSDT is to permit orbital rotations. That means, if 
we operate on a single determinant Qo composed of orbitals cp1cp2 - - * cpn we can 
form any other Qb composed of orbitals cpicp; * - cp; with exp (T,)Qo = Qb . 
[Any Qbcan be obtained from Qo via the action of exp(T,), provided ahand  a,, 
are not orthogonal. This is known as the Thouless theorem.] Because the 
relaxed and unrelaxed orbitals are related by such an orbital rotation, we have 
(for CCSD), 

Though we never explicitly obtain Qb (it could actually be constructed from the 
T ,  coefficients), most of the relaxation and correlation effects are introduced by 
solving the CCSD equations. The coupling between relaxation and correlation 
is incomplete until all possible excitations (i.e., those due to T,, T4, . . . ) are 
also included. But CCSD is usually adequate because most correlation effects 
are found at just the T2 level. This is apparent from Table 17. The difference 
between using the QRHF reference”’ (which is a spin eigenfunction) and the 
fully relaxed (but spin-contaminated) UHF reference for the ion is 0.03 to 0.07 
eV for the valence levels. Even for the core, which is most sensitive to relax- 
ation, the difference of 0.36 eV amounts to less than 0.1%! 

It should be remarked that the CISD method does not share this property. 
The reason is that the exponential form of T ,  is critical in describing orbital 
rotations. Approximating exp(T,) by 1 + T ,  = 1 + C,, which would be the CI 
form for single excitations, provides only a small part of the net effect because 
CI is linear and terms that are nonlinear in T ,  appear as parts of C,, C,, . . . , 
in CI approaches. Also, there is less coupling through the higher excitations 
because CISD, for example, would not include the TITz triple and TS quadru- 
ple excitation terms of CCSD. Similarly, no conventional finite-order perturba- 
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- 3 0 u  

L -  1 7ig 

IL 30, 

2 -TL la, 

2 20, 

IL. 10, 

JA 1% 

2 20g 

Figure 14 Example of a shake-up ionization for N,. 

tion method (even fourth-order) has a similar degree of invariance, because it is 
the infinite-order aspect of CC theory that is critical here. After T,, the most 
important contributions come from T3. In the Nz example, its effect can range 
up to 0.5 eV. For highly accurate work, T3 should be included and the basis 
should incorporate multiple polarization functions. 

Before discussing even more sophisticated photoionization correlated 
methods, we need to mention another area in which correlation is important, 
namely the “shake-up” processes.’ l 3  A shake-up ionization means that elec- 
trons are excited (or de-excited) while another is ejected, as shown in Figure 14. 
As the energy relative to the ground state M +  species is changed because of 
excitation upon ejection of the electron, such states typically appear as satellites 
on the principal photoelectron peak. In a favorable case, their intensity can be 
comparable to that for a primary ionization. In principle, there are an infinite 
number of such shake-ups which correspond to each primary ionization, but 
only a few will be intense enough to be observable. 

In the simplest unrelaxed orbital independent particle model, the energy 
of this particular shake-up ionization I ,  (Figure 14) would be approximated by 

where the energy required to excite an electron from the lzu orbital to the 1rg 
orbital in the simplest model is A€ = elsr, - elnu + ( l ~ g l ~ u ~ ~ l ~ g l ~ u )  (see 
later). Such a description is much less satisfactory than for principal ioniza- 
tions. First, the importance of correlation is likely to be greater because there 
will be correlation corrections for both the excitation and the ionization pro- 
cess. Second, the final state for a shake-up process can involve two or more 
important determinants in its description. In this example, the final state corre- 
sponds to a 22, state, but this state requires the combination of determinants 
that correspond to the three spatial orbitals, 1 ~ ~ 1 ~ ~ 2 ~ ~  with aPa, Pas, aPP, 
and Pap spins to be a proper spin eigenfunction. Furthermore, there are inde- 
pendent combinations that can strongly mix, causing a splitting of the shake- 
up state energy and making it lower than that given by the single spin combina- 
tion. Hence, the single determinant description of the final state is entirely lost 
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as a result of final state spin symmetry considerations. The correlated wave- 
function, on the other hand, can in principle introduce all such determinants, 
thereby permitting the proper spin-adapted combination to be constructed. 

A further inadequacy of the independent particle model pertains to an- 
other kind of mixing between configurations. For example, if we ionize the 20, 
electron and then excite a 30, electron to the 30, orbital, we have a second 
spin-adapted configuration of the same symmetry as that involving the prior 
lT,-to-lrTTg excitation, which should have a comparable energy. In the absence 
of other restrictions, it is likely that these two configurations will strongly mix 
in the final state wavefunction. If so, any attempt to describe the final state as a 
single electron excitation is doomed to fail. Clearly, correlation is a critical 
component of the description of shake-up ionization processes. In the particu- 
lar case discussed above, the equation-of-motion method (discussed later) gives 
a shake-up frequency of 30.2 eV compared to the experimental value of 30.0 
eV. Obviously, we can also identify shake-ups by computing the electronic 
excitations for the ion using the tools for predicting electronic spectra. 

The next step in the evolution of methods for photoelectron spectra is to 
avoid making separate calculations for the neutral species and the various 
possible ions. By so doing, we take advantage of certain elements of the prob- 
lem that are common for each species. To do this we will use some simple 
operator concepts that lead us to such a set of equations. 

Define Rk as an operator whose action is to create from the neutral (n 
electron) molecule ground state wavefunction Yo(n) the kth ionized state, 
which has n - 1 electrons, 

(We actually have a plane-wave continuum type orbital for the outgoing elec- 
tron with energy KE that preserves the number of electrons, but we need not 
worry about this explicitly. This fact facilitates the commutation implicit in Eq. 
[59], however.) Since qo(n) is a solution of the Schrodinger equation for n 
particles, and q k ( n  - 1) the solution for n - 1 particles, we have 

H Y o  = &Yo w a 1  

H R k y o  = EkRkq\ I i ,  [56b1 

Multiplying Eq. [56a] by Rk,  and subtracting from Eq. [56b], we then obtain 

(H R k  - R & ) y o  = l k y o  [571 

where I k  = Ek(n  - 1) - Eo(n). In this theory, the correlated n - 1 electron 
states are described by linear combinations of single, double, etc., excitations of 
the n - 1 electron determinants starting with @k = d ( (~~ (1 )  - . - ( P k - l ( k  - 1) 
( P k + l ( k )  * ~ , , - ~ ( n  - I)), made up of neutral orbitals: 
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The objective is to determine Y~,Y;;, etc. Now, if we choose Po = exp(T)D0, and 
carry out some manipulations, it may be shown that Eq. [57] can be written as 

where = e-7 He7 and Rkfi  turns out to vanish. Just as in ordinary CC 
theory, the coefficients Y ~ , Y $ ,  . . . are determined from successive projections 
on single and double excitations, 

and we have for all n ionized (and shake-up) states the equation 

HR = RI E611 

where I is the diagonal matrix of the n ionization (and shake-up) values, and 

We call this the equation-of-motion coupled cluster (EOM-CC) meth- 
0d.’14-’16 EOM-CC results are shown in Tables 18 and 19 for CH2PH.”’ 

For principal ionization potentials, €OM-CC is equivalent to a multi- 
reference approach referred to as the Fock space multireference coupled-cluster 
method (FS-MRCC);27*30 both terminologies are used. Unlike the Fock space 
approach, EOM-CC computational strategies also provide a way to readily 
obtain “shake-up” eigenvalues. Comparison of FS-MRCCSD and EOM-CCSD 
results with AEMBPT and AEcc results for CH,PH shows excellent agreement. 
Results as a function of basis show improved convergence for the 5a‘ level. The 
effect of triples as measured by the noniterative T*(3)”* is not too great. 

To demonstrate results for an open-shell system, Table 20 reports results 
for 02.30 Intensities can also be obtained by considering the left eigenvector of 
the (non-Hermitian) operator fi, along with Rk, and such EOM-CC examples 
are shown for electronic excited states later. 

Electron Afinities 
Electron photodetachment experiments are not fundamentally different 

from photoionization; electrons are just ejected from an anion. Consequently, 
computing the energy for attaching an electron to a molecule M + e- --f M- 
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Table 19 EOM-CCSD Ionization Potentials (eV) for CH,PH 
as a Function of Basis Setu 

EOM-CCSD 

Orbital DZ DZP TZP Experimental 

1 a" 10.18 10.07 10.08 10.30 
Sa' 9.82 10.29 10.27 10.70 
4a' 13.14 13.18 13.19 13.20 
3a' 15.08 15.13 15.16 15.00 

a Reference 1 17. 

(the electron affinity, or E,) poses many of the same methodological problems 
as the photoionization studies. Koopmans' theorem, ASCF, AEMBPT, A€,,, 
QRHF-CC or EOM-CC are all formally applicable; except that we require a 
description of the anion instead of the cation. There are two principal factors 
that make such studies more difficult: 

1. An anion M -  requires a more extensive atomic basis set. 
2. The extra electron in M- introduces additional electron correlation effects. 

In particular, this latter consideration makes the Koopmans estimate of E ,  far 
worse than its estimate of a valence Ip. 

Depending on the system, the extra electron will occupy (in the indepen- 
dent particle description) either a partly empty valence orbital, an antibonding 
valence orbital, o r  a Rydberg orbital. In the latter two cases, a basis set chosen 
to describe the neutral will tend to favor M over M-, causing E A  to be under- 
estimated. Similarly, the additional correlation effects in M- will tend to be 
underestimated at  a given truncation of the FCI because higher excitation 
contributions will be more important. Consequently, computed E A  values are 
generally too small, although no rigorous bounds govern this behavior. 

As an illustration consider :C=C=C=C: which is a triplet (3C,) with a 
T HOMO occupied by two electrons of parallel spin. Table 21 displays results 
obtained with several different levels of correlation and basis There are 
actually three different quantities that can be computed: the vertical electron 
detachment energy (VEDE, energy to eject electron at the geometry of the 
anion); the adiabatic electron affinity (AEA, when the neutral M is allowed to 
relax to its optimum geometry), and the vertical electron affinity (VEA, where 
the geometry of the neutral is assumed for the anion). 

Three different experimental electron affinity values have been reported 
for C, (3.7,3.88, and 3.79 eV). Exactly which measure of EA is being sampled 
is debatable, but it appears to be closest to AEA. The higher precision value of 
3.88 eV would appear to offer the best comparison. Allowing for a correction 
of -0.15 eV from VEDE values as obtained in the PVTZ UHF-CCSD(T) 
results, the larger, more diffuse basis values cluster near 3.8 eV for this quantity. 
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Table 21 Calculated Electron Affinities and Electron Detachment Energies (eV) 
of Linear C, and C y a  

Basis set Method VEA AEA VEDE 

Ss4pld 
Ss4pld 
PVTZ 
PVTZ 
PVTZ 
PVTZ 
PVTZ 
PVTZ 
PVTZ 
PVTZ 
PVTZ + sp 
PvTZ+sp 
PVTZ+sp 
PVTZ + sp 
Ss4p2dlf 
Ss4p2dl f 
Ss4p2dl f 

UHF-CCSD 
UHF-CCSD +T(CCSD) 
UHF-MBPT(2) 
UHF-CCSD 
ROHF-MBPT(2) 
ROHF-CCSD 
UHF-MBPT(2) 
UHF-CCSD 
UHF-CCSD + T( CCSD) 
UHF-CCSD(T) 
UHF-MBPT(2) 
UHF-CCSD 
UHF-CCSD + T( CCSD) 
UHF-CCSD(T) 
UHF-CCSD 
UHF-CCSD+T(CCSD) 
UHF-CCSD(T) 

3.30 
3.39 
3.982 
3.482 
3.561 
3.525 
3.924 
3.442 
3.553 
3.555 

4.074 
3.628 
3.660 
3.669 
4.020 
3.579 
3.647 
3.654 

3.57 
3.62 
4.170 
3.779 
3.764 
3.817 
4.155 
3.738 
3.807 
3.812 
4.288 
3.852 
3.933 
3.937 
3.775 
3.855 
3.860 

.Reference 119. 

In addition to the basis, the very important effect of triple excitations for 
obtaining highly accurate answers is apparent from this set of calculations. 

Just as a spectrum of different ionizations is commonly observed, several 
bound electron attached states may exist. This can happen for a cation like 
MgF+ because of the net positive charge. In an independent particle picture, 
different empty orbitals (see Figure 15) can be occupied at  different EAi to give 
the corresponding electronic states of the neutral (see Table 22). These are the 
same states that could be obtained via electronic excitations of the neutral, but 
they also can be approached as an electron attachment problem using either 
EOM-CC or FS-MRCC. An electron adding to the 7a orbital gives the X2Z+ 
state of MgF; adding one to the 3.ir orbital gives the A211 state, and adding one 
to the 8a and 90 orbitals provides the B and C2C+ states, respectively. 

- 9u 

- 80 

- 37r 

- 7a 
- 

% % 2 r  Figure 15 Orbital diagram of 

% 60 MgF+( lo~20~3az17r44u2Soz6a22~4). 
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Table 22 Electronic Transition Energies ( cm-*)  of MgF+ 

FSMRCCSD‘ 29,312.4 
QRHF-CCSD‘ 29,378.7 
FSMRCCSDb 27,851.2 37,831.4 45,537.5 
Experimental 27,852.5 37,187.4 42.589.6 

UMg: 6-31G“, F: DZP, total: 35 Gaussian-rype orbitals (GTOs). 
bMg: (12~9p12d/8~6p4d),  F: (10~7pSd/6sSp4d), total: 95 GTOs. 

ELECTRONIC SPECTRA 

In electronic spectroscopy, processes that involve transitions between two 
distinct electronic states in atoms and molecules are studied. The energy typ- 
ically required for these processes falls in the ultraviolet or visible range of the 
electromagnetic spectrum; the field is therefore also frequently called ultravio- 
ledvisible (or W/vis )  spectroscopy. Due to availability of the requisite technol- 
ogy, this is the oldest branch of chemical spectroscopy and has been of interest 
to quantum chemists since the late 1920s. Indeed, many of the early successes 
of Mulliken’s molecular orbital theory involved qualitative interpretations of 
electronic spectra. The advent of the Huckel molecular orbital treatment in the 
1930s made semiquantitative calculations for conjugated organic molecules 
possible for the first time.12’ Two decades later, the semiempirical crystal field 
model was developed and applied with great success to calculate electronic 
energy levels in transition metal complexes. 

Much of our qualitative understanding of electronic transitions and the 
language we use to describe them ultimately derives from the independent 
particle approximation. Typically, we interpret features in absorption spectra as 
“n + IT*’’ or “cr + IT*’’ transitions, etc., in an attempt to describe these 
processes in terms of the simplest molecular orbital picture. However, we 
should be aware that the molecular orbital paradigm is approximate and that 
the actual excitation process is more complex. Within the Born-Oppenheimer 
approximation, the interaction between specific wavelengths of UV or visible 
radiation and molecules leads to transitions between quantum states that “be- 
long” to two separate potential energy surfaces. In general, the absorption of a 
photon takes a state characterized by distinct electronic, vibrational, and rota- 
tional quantum numbers to another state having another set of quantum num- 
bers. The energy required for transitions between different electronic states is 
typically much larger than spacings between vibrational and rotational states, 
so typically observed low resolution spectra are often characterized by blobs 
that grossly represent the electronic part of the transition, with the underlying 
vibrational and rotational features unresolved. Nevertheless, spectra having 
sufficiently good resolution often show vibrational and rotational “fine struc- 
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ture,” with transitions between individual states visible within the absorption 
envelope. (The modern techniques of supersonic jet expansion and laser spec- 
troscopy allow very high resolution spectra to be obtained, even for relatively 
large organic molecules.) These features are often useful for determining differ- 
ences in equilibrium geometry between the ground and excited states of the 
molecule and other properties. Our objective here is to survey some methods 
that can be used to calculate energy differences between the adiabatic potential 
energy surfaces obtainable from quantum chemical calculations. 

As in our discussion of photoelectron spectroscopy, a simple and concep- 
tually appealing description of the excitation process can be developed as fol- 
lows. We will assume that the molecular orbital picture is a valid first-order 
approximation and that the radiation field causes a single electron to be pro- 
moted from the occupied spin orbital i to orbital a, which is not occupied in the 
ground electronic state. Furthermore, in this simplest model we further require 
that the molecular orbitals in the ground and excited states must be the same. 
This treatment, which is based on a one-electron picture that neglects orbital 
relaxation effects, is the direct analog of Koopmans’ theorem but for excitation 
processes. Evaluating the excited state expectation value for the single excita- 
tion @; and for the Hartree-Fock ground state (Do, we obtain after some 
simplification, 

Note that unlike the simple Hiickel method, this SCF-based approach does not 
predict that the excitation energy is given by a difference of orbital eigenvalues. 
Rather, this model allows for a certain amount of interaction between electrons 
and correctly predicts unequal energies for configurations that differ only in the 
spin of unpaired electrons. In the case that the ground state is a closed-shell 
singlet, this model predicts singlet and triplet excitation energies of 

AEsinglec = E, - ei + (ailai) = E, - ei + (aalii) ~ 4 1  

and 

The last terms of Eqs. [64] and [65] use the familiar Mulliken two-electron 
integral notation. Note that the singlet-triplet splitting predicted by this 
simplest model is given by the exchange integral between orbitals u and i. Since 
this term is always positive, the simple model presented here predicts that the 
triplet state is more stable, thereby providing a simple physical justification for 
Hund’s rule. 

Although the model described above may be qualitatively appealing, it 
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does not provide quantitatively satisfactory predictions of excitation energies 
even though the analogous Koopmans approximation works reasonably well 
for ionization potentials. Why should this be? The principal difference between 
the Koopmans approximation for ionization potentials and the present treat- 
ment of excitation energies is that the latter explicitly involves unoccupied SCF 
orbitals. This is the main problem with these calculations, inasmuch as the SCF 
procedure does not optimize the virtual orbitals and the frozen orbital approx- 
imation fails. 

I t  is natural to ask whether a better theoretical approach to excitation 
processes exists, which does not discard the intuitively attractive one-electron 
picture. Indeed, such a method was invented nearly a half-century ago and is 
known as the Tamm-Dancoff approximation (TDA) or CI singles (i.e., CIS).’21 
In this approach, the excited state is approximated by a linear combination of 
elementary frozen-orbital single excitations. TDA exploits a standard CI proce- 
dure. First, we take the set of single excitations and construct (Sl H I S )  = H,, 
and solve H,,Ck = CkEk. The eigenvalues of this matrix, E,, represent the 
eigenvalues of the Schrodinger equation for excited states subject to the restric- 
tions defined by the model, and the eigenvectors are the associated wavefunc- 
tions. The excitation energy is Ek - ESCR because single excitations do not mix 
with the UHF or RHF solution, <Po; the ground state energy is Eo = ESCF. In 
some respects, the term CIS is unfortunate because it suggests a method that 
offers some treatment of electron correlation effects. In fact, the terms “CI” and 
“electron correlation” are so often used interchangeably in the literature that it 
may be difficult to understand that a method called CIS completely neglects 
electron correlation! Hereafter, we will refer to this method as the TDA, with 
the understanding that is equivalent to CIS. (Both the ACES I1 and GAUSSIAN 
program systems have capabilities for performing TDA calculations.) 

The discussion of orbital relaxation in the preceding section provides us 
with a clear way of understanding the shortcomings of the TDA. Recall that any 
Slater determinant formed from a particular set of basis functions may be 
obtained from any other Slater determinant that lies in the same basis by means 
of the exponential transformation 

. 

Let us now assume that the excited state wavefunction is given exactly by some 
Slater determinant. I t  should be clear that the TDA does not contain sufficient 
flexibility to describe this state in the general case because the excited state 
wavefunctions in this approximation are given by a linear combination of 
singly excited determinants 
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The flexibility missing from the TDA arises from its neglect of nonlinear terms 
in the exponential operator of Eq. [66] ,  which would lead to the inclusion of 
very specific types of determinants “doubly,” “triply” excited, etc., into the 
parameterization of the single determinant la’). It is very important to under- 
stand that \@’) is still a single configuration wavefunction and that this inclu- 
sion of more highly excited determinants therefore is not an electron correla- 
tion effect. [This discussion is somewhat oversimplified for excited states that 
correspond to low spin electron configurations, such as open-shell singlets. In 
these cases, the “simplest” excited state wavefunction that retains the property 
of being a spin eigenfunction is 1Qexcited) = l / ~ [ + L a  + +LJ,  where +Lu 
and +Lb are Slater determinants differing only in the spin of the excited elec- 
tron. Within the Thouless parameterization, these determinants may be written 
as exp( q)lQ0) and exp(TT)l@o), respectively. Nevertheless, the resulting ex- 
cited state wavefunction corresponds to a single electronic configuration and 
contains no correlation.] After one understands the considerations above, it 
can be seen that the first way to improve the TDA is to extend its flexibility 
through a better treatment of the exp(T,) operator. These effects are included, 
albeit in an approximate and somewhat indirect way, in what is called the 
random phase approximation (RPA).’“ [Again, to satisfy requirements of spin 
symmetry, we take exp(T,) to be e x p ( T  + T?) = e x p ( T )  exp(TF) in the 
following.] 

We can derive this method in a nonstandard way32 by considering the 
energy associated with @’ = exp(T,)@,, that is, 

and vary the energy with respect to fi ,  which leads us to the matrix equation 
that depends on the H,, matrix, that is, the A matrix of RPA augmented by the 
B matrix ((@/H??/21@)) that derives from quadratic T ,  terms. This alternative 
approach to the calculation of excitation energies allows for some effects of 
selected doubly excited configurations, and the RPA method is therefore some- 
what more flexible than the TDA. It is often stated in the literature that the RPA 
method (which is equivalent to the time-dependent Hartree-Fock approxima- 
tion) reduces to the coupled-perturbed Hartree-Fock approximation in the 
static case and contains electron correlation effects, but this is certainly untrue 
unless one adopts a nonstandard view of what is meant by correlation. 

Excitation energies calculated with the RPA and TDA approaches for N2 
with a moderately large basis set are listed in Table 23. Both the RPA and TDA 
excitation energies are significantly lower than those obtained with the simplest 
frozen orbital approximation. All these approaches differ only in their treat- 
ment of the final state, and the pattern of predicted excitation energies shows 
this in a rather dramatic way. Both the RPA and TDA allow for a limited 
amount of relaxation and provide much improved predictions. Inclusion of the 
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Table 23 Excitation Energies for h’? (5s3pld Basis) 

Excitation energies (eV) 

Final state TDA RPA Experimental 

a”Z; 8.50 7.93 9.9 
0’ A” 9.08 8.80 10.3 
alll 9.99 9.74 9.3 
b i d :  15.78 15.48 14.4 

special “double” excitation effects discussed above in the RPA is reflected in a 
systematic lowering of the predicted excitation energies relative to the TDA. 

Before concluding this discussion of the TDA and RPA approaches, one 
problem occasionally encountered in RPA calculations of excitation energies 
relative to a closed-shell ground state should be discussed. Within the RPA, 
excitation energies are intimately related to the dependence of the energy with 
respect to infinitesimal changes in the molecular orbitals. In some cases, 
Hartree-Fock solutions are “unstable,” meaning that a small change in the 
orbitals results in a lowering of the electronic energy. Most frequently, the 
change that lowers the energy involves a breaking of the spin symmetry of 01 

and p orbitals. Hence, the determinant is transformed from an RHF to a UHF 
wavefunction. The UHF energy is always lower than or equal to the RHF result 
because spin symmetry can be relaxed. If lower energy UHF solutions exist, we 
say the RHF is unstable. When this occurs, the RPA fails and predicts imagin- 
ary excitation energies for transitions to triplet excited states. The subject of 
Hanree-Fock instabilities is rather complicated and takes us too far afield 
from our discussion, but suffice it to say that these phenomena tend to occur in 
systems that are poorly described by a single determinant. Hence, in cases that 
should be suitable for the RPA (both ground and excited states are well repre- 
sented by a single configuration), these pathological problems will not occur. 
However, this sort of instability is actually encountered fairly often; a simple 
example is C2H,. It should be expected to occur in any closed-shell system for 
which one can draw reasonable Lewis dot structures with two unpaired elec- 
trons such as for ozone (Figure 16). Molecules that fall into this category are 
frequently called biradicals. The nature of these systems and the problems 
associated with their theoretical description form an interesting subject, which 
is not discussed here. 

A second type of instability is known as a “singlet” instability, which 

Figure 16 Resonance in ozone. 
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means that the SCF energy can be lowered by an in-phase rotation of (Y and p 
spin orbitals (i.e., there is a lower energy single determinant that is still a 
closed-shell singlet). This type of instability is not very common and is usually 
encountered only in exotic systems such as N2 at very large internuclear separa- 
tions and the anion Of-. Fortunately, one is usually more interested in singlet 
excitation energies, and the scarcity of cases exhibiting this type of instability 
means that the RPA can usually be used for such studies. 

When it is possible to describe an excited state by a single configuration 
wavefunction, the “best” uncorrelated approach would be via separate evalua- 
tion of SCF wavefunctions for both the ground and excited states. Subtraction 
of the resulting energies gives us excitation energies in a AESCF treatment 
analogous to that discussed previously for ionization potentials. However, the 
AESCF approach to excited states has a number of undesirable features that 
severely limit its applicability. First, most excited states cannot be adequately 
approximated by any single determinant (many are open-shell singlets), and 
one must resort to low spin ROHF approaches, which can be difficult to 
converge. Second, as in the case of ionization potentials, one encounters the 
problem of variational collapse. In fact, this represents even a greater problem 
in excitation energies than it does in the determination of ionization potentials 
because in the latter case we can at least determine the lowest ionization poten- 
tial in this manner. In general, the same is not true for excitation energies. 
Consider a molecule with no elements of symmetry, such as FOOH. In such a 
case, it may not be possible to routinely obtain SCF solutions for any ‘state 
other than the electronic ground state, prohibiting any attempt to calculate 
AESCF excitation energies. 

Another desirable aspect of using the TDA and RPA approaches is that 
they both use a common set of molecular orbitals, which aids both in develop- 
ing qualitative interpretations of the excitation process and also in calculating 
properties such as transition moments. The latter depends on l(+iJrl+f)12, where 
r = Ziri is the dipole operator. It is easy to evaluate such a one-electron property 
provided Jli and Jlr are described in terms of the same orthonormal orbital set. 
When different orbitals are used in qi and +,typically to get the “best” 
possible solution for both states-the resultant nonorthogonality causes a 
number of complications. This is particularly true when an entire spectrum of 
electronic states is the objective and all transition moments are required. Nev- 
ertheless, all the methods discussed so far neglect electron correlation effects, 
and one must go beyond the single configuration approximation if quantitative 
accuracy is to be achieved. 

Conceptually, one of the simplest ways to study excited states at the 
correlated level of theory is by means of AE methods, in which E is obtained 
with some post-HF method. While the problems of variational collapse dis- 
cussed above severely complicate efforts to calculate excitation energies by 
ASCF methods, it is actually straightforward to obtain ACI excitation energies, 
provided the same reference function is used for both states. In this case, the 
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orbitals are usually optimized for the ground state. Correlated energies are then 
obtained by diagonalization of the Hamiltonian matrix in the basis of the 
reference determinant and some suitable subset of excited configurations. In 
this way, wavefunctions for the ground and excited states as well as excitation 
energies are easily obtained. Despite the conceptual simplicity of this approach, 
it is not often used in practice. Why is this? Once again, considerations of 
orbital relaxation come into play. Remember that all the CI wavefunctions are 
based on a common reference state, a,,, for each k, and that the orbitals 
making up are typically optimized for the ground state. Since computa- 
tional considerations limit practical ACI approaches to the CISD approxima- 
tion, insufficient orbital relaxation is included, and therefore the excited state is 
not described as well as the ground state. As a result of the unbalanced nature 
of the approach, ACISD excitation energies typically overestimate excitation 
energies; especially large differences can be expected to occur when the best 
one-electron descriptions (natural orbitals) for the ground and excited states 
are very different. In fact, TDA and RPA calculations are usually preferable to 
ACI because these approaches offer a more balanced description of the ground 
and excited states. 

The “orbital problem” associated with ACI calculations can be circum- 
vented by a number of means. First, modem developments in MCSCF orbital 
optimization strategies have made obtaining MCSCF solutions for both ground 
and excited states a fairly routine matter. In some calculations, the orbitals are 
indee‘d optimized for each state of interest, and the ground and excited states 
are treated in an even-handed way. Dynamic correlation can then be included 
by performing rnultireference configuration interaction calculations. This ap- 
proach, which can be used to obtain very accurate excitation energies, has been 
used to study a number of small molecules. However, it is inconvenient for the 
study of several excited states because separate orbital optimizations and CI 
calculations are required for each state. Furthermore, the use of different or- 
bitals for different states severely complicates the calculation of transition prop- 
erties, which are needed to describe important physical phenomena such as 
oscillator strengths. 

One way to include many of the advantageous features of both the ACI 
and AMCSCF-CI approaches is to use “state-averaged” orbitals. In these calcu- 
lations, a common set of orbitals designed to describe a set of electronic states 
is used in a subsequent CI diagonalization. Such a procedure is relatively effi- 
cient and is expected to work well, provided the optimal orbitals for all the 
states of interest are not very different. However, the strategy used to obtain the 
state-averaged orbitals involves minimization of an energy functional that 
weighs the electronic states arbitrarily and is therefore not amenable to a black- 
box procedure. Furthermore, if there is a significant difference between the best 
one-electron picture of the electronic states, such a state-averaged scheme can- 
not work very well because all electronic states will be described poorly. In 
addition, the size of the configuration space required in these calculations is 
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larger than that needed for state-specific MCSCF calculations, resulting in 
great computational demands. 

The considerations discussed above clearly show that multireference CI 
approaches to the study of excited states require great care and are not well 
suited to black-box applications. Ideally, one would like a method that retains 
the conceptual simplicity of the ACI approach while providing a better descrip- 
tion of excited states. Since the problems associated with the ACI method are 
due to the use of a single determinant reference state for all electronic states, 
one might naturally wonder whether a "better" (more flexible) reference state 
can be used. In other words, we assume the same form of the excited state 
wave function 

but no longer take lqo) to be a single determinant. Let us consider the case in 
which the reference function is the CC wavefunction 

where lQo) is the SCF determinant. After inserting this expression into the 
Schrodinger equation and carrying out a few manipulations similar to the 
EOM ionization problem, but here for the same number of electrons, and sub- 
tracting the ground state solution, one obtains 

exp(-VA ~XPKPKIQO) = AEKR,I@.,J ~701 

or, equivalently, 

There is a CI-like eigenvajue equation for the excitation energy, AEK, 
except that the Hamiltonian (H) has been replaced by fi and includes the 
ground state correlation. Again, in practical calculations, the T operator must 
be truncated to a suitable level of excitation, typically, T = TI + T,, which 
defines the CCSD model for the ground state. Such a reference is much more 
flexible than that used in ACI studies, yet this approach retains the feature of 
using a common set of orbitals to describe all states. Nevertheless, for finite 
truncations of T, the excited state wavefunction is more constrained than the 
ground state CC solution. One therefore expects some residual bias in favor of 
the ground state. However, the numerical consequences of this imbalance 
are necessarily smaller than those associated with single reference ACI ap- 
proaches. This equation-of-motion, coupled-cluster (EOM-CC) method, with 
T = TI + T2 and i k  = + RbZ, has recently been implemented into the 
ACES I1 program ~ y s t e m . " ~ ' ~ " ~ ~ ~ ~  We believe that this method (and its closely 
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related Fock space MR-CCSD)27-29.'23 will eventually become the most com- 
monly used high level approach for the study of excited states. (Unlike the case 
for ionization potentials and electron affinities, here these two methods do not 
give exactly the same answers. See also SAC-CI.'24) 

Before discussing the numerical accuracy of various methods, some men- 
tion should be made of the special demands placed on basis sets in excited state 
calculations. Superficially, excited states can be grouped into two categories: 
valence type and Rydberg type. In the former category, the spatial extent of the 
electronic probability distribution is similar to that in the ground state, whereas 
Rydberg states have significantly more diffuse electronic wavefunctions. Be- 
cause of the large difference in the character of the density between the ground 
and Rydberg-type excited states, basis set considerations are important. To 
properly describe Rydberg states, one is forced to use basis sets that contain at 
least a few diffuse functions, which are needed to describe the long-range 
features of the electronic charge cloud. Usually, Rydberg states are charac- 
terized by a hydrogen-atom-like designation ( n  = 3, n = 4, etc.) with energies 
that converge toward some ionization limit. In practice, a few diffuse functions 
usually provide a good description of the n = 3 levels, while more and more 
diffuse functions are required for accurate calculations of higher levels. 

Some commonly used basis sets that contain diffuse functions are the 
augmented correlation consistent basis sets of Dunning (PVDZ+, PVTZ+, 
PVQZ+ , etc.),66 the atomic natural orbital basis sets of Widmark, Malmqvist, 
and Roos (WMR),64 the polarized basis sets of Sadlej (POLl),67 and augmented 
variants of the 6-31G and 6-311G basis sets1" (6-31G+, 6-31G+(dYp), etc.). 
(All these basis sets are available in the ACES I1 program library.) For most 
routine calculations, we recommend use of the POL1 basis sets, which are 
relatively small and appear to provide reasonable results for valence transitions 
as well as the first level of Rydberg states. The amount of Rydberg character is 
easily monitored by comparing the second moment of the electronic charge 
distribution (r2) to that calculated for the ground state. These values can be 
obtained from the associated one-particle density matrices, which are evaluated 
in a straightforward way for all the approaches discussed here (TDA, RPA, ACI, 
EOM-CC).l16 For valence states, the standard basis sets usually used to com- 
pute energy differences and molecular geometries (6-31G", DZP, TZ2P, etc.) 
should be acceptable because the ground and excited state electron densities 
have similar spatial extent. 

The accurate prediction of excitation energies and associated excited state 
geometries and properties is one of the more challenging areas of quantum 
chemistry. All the methods that are easily applied to calculating a spectrum of 
excited states treat the ground state somewhat more completely than the ex- 
cited states, so improvements in the level of theory usually tend to reduce the 
predicted excitation energies. Furthermore, for Rydberg-type excited states, 
basis set improvements also lead to a systematic lowering of the predicted 
values. Hence, although fortuitous cancellation of basis set and correlation 
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effects is observed in some applications of quantum chemistry (such as the 
prediction of equilibrium geometries and vibrational frequencies), these effects 
act in concert in excitation energy calculations. 

We now turn to a brief survey of the numerical performance of various 
methods for singlet-singlet transitions from closed-shell ground states. (The 
EOM-CC implementation in ACES I1 is equally applicable to open-shell 
ground states, but we do not discuss excitation energies of open-shell molecules 
simply because very little experience has been gained thus far in these calcula- 
tions.) Furthermore, since all optically allowed (and therefore most interesting) 
transitions from closed-shell ground states are of the singlet-singlet variety, we 
also do not consider singlet-triplet transitions. Nevertheless, the accuracy of 
excitation energies calculated for singlet-triplet processes will always be com- 
parable to that for the corresponding singlet-singlet energy difference. How- 
ever, these transitions are not allowed by spin and therefore carry no oscillator 
strength in the nonrelativistic Born-Oppenheimer approximation. 

To “factor out” basis set effects, we first compare in Table 24 full configu- 
ration interaction (FCI) excitation energies and dipole strengths (the values in 
parentheses) to those obtained with the TDA, RPA, ACISD, and EOM-CCSD 
approximations. Because FCI is a very expensive method, which has a factorial 
dependence on the number of electrons, we are restricted to a small system and 
present comparisons only for the beryllium atom and the CH+ molecule.”6 

The results in Table 24 clearly illustrate many of the points made in our 
earlier discussion. For most of the excitations considered here, the ACISD 
results are in the poorest agreement with the FCI excitation energies. All these 
values are much too large, reflecting the unbalanced nature of the method in 
favor of the ground state. The RPA and TDA results are in better agreement, 
with the former providing systematically lower excitation energies than the 
latter. Nevertheless, none of these three approaches can be said to provide 
quantitative predictions of the excitation energies. 

The EOM-CCSD results, however, are in good agreement with the FCI 
calculations. Note that there is a clear negative correlation between the quality 
of the results obtained at this level and the values in the rightmost column 
under the heading “AEL” (approximate excitation level). These numbers pro- 
vide a measure of the number of electrons that are “excited” in the transition 
between the ground and excited states. For excitations that are well described 
by single excitations (AEL values near l .O) ,  the EOM-CCSD excitation energies 
are in excellent agreement with the FCI values. However, larger errors are noted 
for transitions that have significant double-replacement character. Note also 
that the TDA and RPA approaches also fail completely for these transitions 
because they are ultimately one-electron models. The performance of EOM- 
CCSD for excitations with AEL values much larger than unity is relatively poor 
because the final state wavefunctions corresponding to these processes are 
constrained to a greater degree than those for nearly pure single excitations. 
Better results would be achieved by a more elaborate EOM-CC approach, 



T
ab

le
 2

4 
C

om
p

ar
is

on
 o

f 
D

if
fe

re
nt

 M
et

h
od

s 
fo

r 
E

xc
it

at
io

n 
E

ne
rg

ie
s 

(e
V

) a
n

d
 D

ip
ol

e 
St

re
ng

th
s 

(i
n

 p
ar

en
th

es
es

, a
to

m
ic

 u
n

it
s)

 
w

it
h

 F
ul

l C
I 

fo
r 

S
ta

te
s 
of

 B
e"

 a
n

d
 C

H
+

""
 

M
et

h
od

 
F

in
al

 
st

at
e 

sy
m

m
et

ry
 

T
D

A
 

R
PA

 
A

C
E

D
 

E
O

M
-C

C
S

D
 

FC
I 

A
E

L
" 

B
e 'S

 
6.

13
 

6.
12

 
7.

69
 

6.
77

 
6.

77
 

1.
06

 
'S

 
7.

26
 

7.
26

 
8.

97
 

8.
08

 
8.

08
 

1.
04

 
'P

 
5.

05
 (

2.
54

8)
 

4.
80

 
6.

24
 

5.
32

 (
3.

56
4)

 
5.

32
 (

3.
54

9)
 

1.
06

 
'P

 
8.

77
 (

0.
10

1)
 

6.
72

 
8.

39
 

7.
47

 (
0.

02
1)

 
7.

46
 (

0.
02

2)
 

1.
06

 
'D

 
6.

94
 

6.
93

 
8.

03
 

7.
16

 
7.

09
 

1.
59

 
'D

 
7.

59
 

7.
59

 
8.

97
 

8.
06

 
8.

03
 

1.
22

 

C
H

+
 

IZ
+

 
17

.6
0 

(0
.1

02
) 

17
.5

2 
(0

.1
95

) 
9.

92
 

9.
1 

1 
(0

.0
25

) 
8.

55
 (

0.
02

5)
 

1.
96

 
1
c
+
 

13
.7

5 
(0

.9
86

) 
13

.7
0 

(0
.9

33
) 

14
.9

4 
13

.5
8 

(1
.0

73
) 

13
.5

2 
(1

.0
80

) 
1.

06
 

I
n

 
15

.2
3 

(0
.5

85
) 

14
.8

4 
(0

.8
91

) 
15

.5
7 

14
.4

5 
(0

.6
92

) 
14

.1
3 

(0
.5

88
) 

1.
24

 
'A

 
49

.0
3 

49
.0

2 
8.

44
 

7.
89

 
6.

96
 

1.
98

 
'A

 
59

.7
9 

59
.7

7 
18

.4
9 

17
.3

4 
16

.8
3 

1.
66

 

a(
9s

9p
Sd

) b
as

is
. 

b
( 1

4s
Sp

 1 d
) b

as
is

. 
.R

ef
er

en
ce

 1
16

. 
dA

pp
ro

xi
rn

at
e 

ex
ci

ta
tio

n 
le

ve
l 

(s
ee

 te
xt

). 

i
n

 
2.

93
 (

0.
09

7)
 

2.
65

 (
0.

10
9)

 
4.

46
 

3.
26

 (
0.

09
5)

 
3.

23
 (

0.
08

0)
 

1.
03

 



Electronic Spectra 147 

particularly one in which T is approximated by TI + T2 + T3. However, such 
calculations would scale with the eighth power of the number of basis functions 
and are not a practical method for routine applications. Approximate inclusion 
of T,, as in CCSD(T) or CCSDT-1 should offer some improvement, however. 
Namely, when an excited state involves significant double excitations, the triple 
excitation operators ( T3 and R,) would introduce correlation corrections anal- 
ogous to those carried by T, and R ,  for “single” excitations. 

For optically allowed transitions, dipole oscillator strengths predicted by 
the EOM-CCSD model are superior to those calculated at the RPA and TDA 
levels and are in relatively good agreement with the FCI results for all the 
transitions that have AEL values near 1.0. The behavior of the oscillator 
strengths versus the AEL diagnostic parallels that of the predicted excitation 
energies, as it should, because both quantities ultimately depend on the quality 
of the excited state wavefunction. The perfect agreement between the EOM- 
CCSD and FCI oscillator strengths for the nearly pure 1C++*C+ double exci- 
tation in CH+ is clearly fortuitous. 

In applications of the EOM-CCSD approach to chemical problems, two 
factors must be carefully considered. As discussed above, the method works 
best for processes that are well described by single electron transitions, so some 
degree of caution must be exercised when studying excitations that have a fair 
amount of double-excitation character (somewhat arbitrarily, we place the cut- 
off for this “dangero~s’~ region at AEL values of 1.2 and larger). In addition, 
the basis set used in these calculations must be properly chosen. The latter 
point is particularly true for the study of Rydberg-like states, where basis sets 
containing diffuse functions (such as POLl) should be used. 

Assume that a DZP basis is used to study excited states of water. If such a 
calculation is performed, the ( r 2 )  values for the excited states will be similar to 
the ground state value. This does not mean that the excited states of water are 
valence type! Indeed, the DZP basis is inherently incapable of describing 
Rydberg-type states because it does not contain diffuse functions. If a more 
flexible basis such as POLl is used, the (r2) values for the excited state will be 
much larger than those of the ground state, showing that these are actually 
Rydberg states. Valence states may be identified as those for which expansion 
of the basis from a valence set, such as DZP, to a diffuse basis, such as POL1, 
does not significantly change the calculated values of (rz). To simplify matters 
and to make calculations less expensive, it is probably best to carry out TDA 
calculations with the two different types of basis set and identify the states as 
either Rydberg or valence. Then, an appropriate basis can be selected for the 
higher level calculations. 

In Table 25 we present results of TDA and EOM-CCSD calculations for 
the ketene molecule. This system has an extraordinarily complex electronic 
spectrum, which has been the subject of a number of experimental and theoret- 
ical analyses. It also illustrates many features of excited state calculations. 
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Table 25 Excitation Energies of Ketene (eV) and Corresponding Dipole Oscillator 
Strengths (in parenthesis, atomic units) 

DZP basis 

Final state TDA EOM-CCSD AEL Experimental 

'A2 4.38 4.04 1.08 3.84 
'A1 8.63 8.15 (0.156) 1.08 6.78 
'B2 9.64 8.98 (0.0006) 1.07 5.86 

2IA, 9.97 9.60 1.10 
21B2 10.94 10.34 (0.006) 1.07 
21A1 11.34 10.95 (0.946) 1.09 

POLl basis 

Final state TDA EOM-CCSD (rZ). AEL ExDerimental 

'A2 4.32 3.98 40.18 1.08 3.84 
'A' 7.83 7.22 (0.165) 48.3 1.08 6.78 
'B2 6.41 5.89 (0.033) 48.8 1.07 5.86 

21A2 7.52 7.09 55.0 1.06 
21B2 7.73 7.20 (0.008) 57.8 1.07 
2lA,  8.54 8.12 (0.033) 47.9 1.07 

G r o u n d  state (rz) value is 41.0 au. 

Reliable experimental results for the excitation energies of ketene are 
limited to the three lowest electronic states, which are believed to be lAz, lA1, 
and 1B2, respectively. If we first look at the results obtained with the DZP basis 
set, we note that all AEL values are in the range 1.07-1.10, indicating that the 
EOM-CCSD model probably provides a good treatment of differential electron 
correlation between the ground and excited states. However, the second and 
third excitation energies predicted by these calculations are in very poor agree- 
ment with the experimental values. In fact, while the experimental value for the 
X1AI+'B2 transition is approximately 1 eV below that for excitation to the 
'A, state, the EOM-CCSD results obtained in the DZP basis predict the oppo- 
site behavior, with a splitting of nearly 1 eV favoring the 'A, state. While it 
would be tempting to speculate that the errors are systematic and the ordering 
deduced from the experiments incorrect, it is also well known that Rydberg 
states are ubiquitous in multiply bonded organic molecules. Hence, before 
glibly jumping to  conclusions, it is always worthwhile to use a larger basis set. 

The results (Table 25) obtained with a basis suitable for the study of 
Rydberg states (the POLl basis) are strikingly different from those obtained 
with DZP. Although the lowest energy X 1 A p 1 A 2  excitation does not change 
significantly, incorporation of diffuse functions into the basis set lowers some of 
the other excitation energies by as much as 3 eV! Differences between the 
excited and ground state (r2) values are roughly proportional to the energy 
lowerings brought about by incorporating diffuse functions in the basis set. In 
particular, note that the ordering of electronic energy levels is now in agreement 
with experimental assignments. Predicted excitation energies are still a bit on 
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the high side for the first and third transitions. Nearly perfect agreement is 
achieved for the X 'Ap 'B2 transition, with the EOM-CCSD result a mere 0.03 
eV above the experimental value. It is significant to note that this is the most 
well-established experimental result in Table 25 and corresponds to a vertical 
excitation energy. The experimental values for excitation to the first and third 
levels are less certain and probably correspond more closely to adiabatic (equi- 
librium geometry to equilibrium geometry) than vertical excitation processes. 
This is another feature that must be carefully considered in studying excited 
states, since excitation energies obtained from experiment often are affected by 
changes in equilibrium geometries between the two states. Since the equilib- 
rium geometry of the excited state is necessarily lower in energy than that 
associated with the vertical transition, adiabatic transition energies will always 
be lower than the vertical values. 

In addition, all the ketene states discussed above are open-shell singlets, 
which require at least two determinants in a zeroth-order description as dis- 
cussed earlier. An approach for an in-depth study specific to one of these states 
is offered by the two-determinant, TD-CCSD, multireference method.31 In ket- 
ene, with a DZP basis the TD-CCSD vertical excitation energy is 3.83 for the 
'A2 state in excellent agreement with experiment, while the 21A, state is at 
8.64 eV compared to the EOM-CCSD value of 8.15 eV. For the same two 
states, the Fock space MR-CCSD gives 3.83 and 7.89 eV. Other methods 
related to EOM-CC include polarization propagator (PP) procedures3* built 
on a second order [MBPT(2)] ground state wavefunction (e.g., the SOPPA 
method) and more general methods of analysis that use a CC ground state 
reference (e.g., CCPPA). 

It is hoped that this section provides a useful introduction to ab initio 
studies of excited states. In this challenging area in quantum chemistry, it is not 
always straightforward to compare results of such calculations with experimen- 
tal values because information about molecular excited states (and, in particu- 
lar, the associated potential energy surfaces) is very scarce. Indeed, while the 
prediction of infrared spectra has clearly been the most fruitful area of applica- 
tion for quantum chemical methods in the past decade, it is likely that theoret- 
ical studies of electronically excited states will continue to grow in importance. 
In particular, the availability of accurate (and therefore predictive) methods 
such as the EOM-CCSD approach in programs such as ACES I1 will serve to 
make accurate calculations of these systems accessible to a wide range of users. 

MOLECULAR PROPERTIES 

First-Order Properties 
Properties of interest can be static or dynamic (i.e., time or frequency 

dependent); first, second, or higher order; and one- or two-particle type. First- 
order static one-electron properties (dipole and quadrupole moments, electric 
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field gradients, hyperfine coupling constants, etc.) are obtained by integrating 
over the molecular charge density. 126 That is, for some one-particle operator 6 
= Zi 6(i) [e.g., for a dipole moment in atomic units 6 = Xi r(i)] ,  

and p( 1) is the (spin-dependent) molecular charge density. 
Another, more general way to define a property is via perturbation the- 

ory, where the usual electronic Hamiltonian, H (now H ( 0 ) )  has a perturbation 
A 6  added to it. (The “0” argument of H should be taken to mean that the 
Hamiltonian does not contain the perturbation of interest. It should not be 
confused with a Hamiltonian that ignores electron correlation.) Then 

[751 
ax X = H ( 0 )  + A 6  = H ( 0 )  + A 

and the Schrodinger equation for the perturbed Hamiltonian gives us 

X Y ( X )  = €(A)Y(h) ~761 

Then, expanding *(A) and €(A)  in a Taylor series, 

*(A) = “(0) + - a 9  A + - 1 - a2* A2 + . . . 
ax 2 ah2 

a h  2 ah2 
aE 1 a2E E(A) = E ( 0 )  + - A + - - A2 + - * - 

Inserting Eqs. [77] and [78] into Eq. [76], and insisting that the coefficient of 
each power of A be the same on both sides of the equation, we have 

Provided we know the solution to the unperturbed Schrodinger equation 
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H(O)W(O) = E(O)*(O) [801 

there is an exact equivalence between the first derivative and the expectation 
value. The fact that we obtain the property from the first derivative of E,  the 
first term in the power series, justifies the terminology "first-order" property. 
In the next section we will consider second-order properties. 

Equation [81] is a statement of the Hellmann-Feynman theorem, which 
always holds when we have the exact solution for the unperturbed Schrodinger 
equation (Eq. [80]). However, the Hellmann-Feynman theorem is true only for 
certain classes of approximate wavefunctions. Except for energy derivatives as 
previously discussed, where the Gaussian basis is fixed to the nuclear centers in 
a molecule and therefore changes when the nuclei are displaced, basis func- 
tions are usually independent of the perturbation X 6 .  (An exception occurs 
when field-dependent or gauge-including orbitals are employed, as in NMR 
and magnetic susceptibility calculations.) This causes the simple Hellmann- 
Feynman theorem, Eq. [81], to be satisfied for an SCF wavefunction. This 
follows because it may be shown that any wavefunction that is variationally 
optimum with respect to variation of all adjustable parameters satisfies the 
Hellmann-Feynman theorem. In MCSCF, both the MOs and CI coefficients 
are optimized, so it, too, satisfies Eq. [8 13 for ordinary properties. However, for 
CI wavefunctions, the configuration coefficients are variationally optimum but 
the MOs are not. Similarly, in MBPT or CC theory neither the configuration 
coefficients nor the MOs are optimum. For the latter cases, the second term in 
Eq. [79] has a role to play in the accurate treatment of properties and should be 
included. 

In the SCF independent particle case, *(O) = a0, and Eq. [74] becomes 

so 

The SCF solution for a first-order, one-electron property is usually argued to be 
relatively accurate. The reason follows from the Msller-Plesset t h e ~ r e m . ~  Ear- 
lier we found that the first correlation correction to <Po comes solely from 
double excitations, Q0 + @ ( I )  = Q0 + Z i > j  @$C$'. However, (@,,lep$') = 0 

a>b 
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Table 26 Variation of Ground State Dipole Moments (au) of Selected Small 
Molecules with Different Basis Sets at the SCF Level0 

Basis set oc H2O H3N H2S HF 

STO-3G 0.0661 0.679 1 0.7028 0.4026 0.5069 
3-21G -0.1552 0.9581 0.8552 0.7148 0.8479 
6-31G -0.2209 1.0349 0.9139 0.7315 0.9032 
6-31G* -0.1309 0.9595 0.7435 0.5418 0.7759 
DZP -0.0966 0.8604 0.7217 0.5025 0.8065 
TZP -0.1179 0.8671 0.7414 - 0.8063 
POL1 -0.0989 0.7804 0.6366 0.4375 0.7566 
Experimental +0.044 0.721 0.578 0.40 1 0.708 

UDipole is positive with A'B- polarity. 

for a one-electron property, so the quantity (61 = (ao + Wl)J61@,, + W)) = 
(@,,~6~@o) + (@(1)161@(1)), Hence, all first-order correlation corrections to (6) 
vanish for an SCF solution because the second term is second order in correla- 
tion. Tables 26, 27, and 28 show how well this works in practice for dipole 
moments, quadrupole moments, and field gradients. As is well known, the SCF 
dipole moment of CO has the wrong sign. Nevertheless, in the POL1 basis, 
which is good for such properties, SCF dipoles fall within about 10% of 
experiment. 

When making comparisons to experimental properties, we must empha- 
size the role of the Gaussian basis set. Ab initio methods obtain answers that 
are only as reliable as the basis permits. A basis that is good for energy calcula- 
tions is not usually appropriate without extension for other properties. This is 
easy to understand. The energy preferentially samples regions of space close to 
the nuclei via operators like l / r  while a dipole moment requires a description 
of i and a quadrupole moment 92 .  The latter are much more sensitive to the 
diffuse parts of the electronic density. A field gradient depends on the operator 
0 = X i  (32 - +)/$, so its - l / r3  dependence makes it particularly sensitive to 
regions of the density near the nucleus. Hyperfine coupling constants are de- 
rived from spin densities-that is, Aiso = (81~/3h)gg~p.,p.~[p*(O) - pP(O)]- 
and therefore depend on the density exactly at the nucleus. Hence, to describe 

Table 27 Variation of Electric Quadrupole Moment (au) of Selected Small Molecules 
with Different Basis Sets at the SCF Level 

Basis set co H,O 
STO-3G -2.2512 0.008 1 
3-21G -2.1529 -0.0622 
6-31G -2.1331 -0.1213 
6-31G" -1.6117 -0.1292 
DZP -1.6494 -0.1043 
TZP -1.7010 -0.1194 
POL1 -1.5368 -0.0989 

NH3 
0.5977 
0.8687 
0.9928 
0.9558 
1.0240 
1.0920 
1.0637 

H ZS co2 
0.2329 -3.9096 
0.5148 -5.2684 
0.5416 -5.4341 
0.6905 -4.0916 
0.6755 -4.0932 
- -4.2469 

0.7883 -3.8087 

HF 

0.9230 
1.5054 
1.5748 
1.6525 
1.6798 
1.7040 
1.7426 
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all the above equitably requires basis sets augmented in both the core and 
diffuse regions. Such simultaneous extensions are seldom practical, so different 
basis sets tailored to different properties are usually used in practice. 

As we have seen in Tables 26-28, the nature of the basis set has a dra- 
matic effect on a property at the SCF level, so that aspect needs to be under 
contr01’~’ before we can reliably assess the role of electron correlation. Finally, 
we should also note that whereas the energy is variational and the wavefunc- 
tion can be optimized to give the lowest energy, the same cannot be done for 
other properties (there are some useful bounds that pertain to second-order 
properties, however). As a result, we can never be certain that properties ob- 
tained at increasingly more complete levels of theory will systematically con- 
verge to the exact result. 

Using the perturbation theory approach to properties, we can always 
evaluate a property by simply adding h6 to the electrostatic Hamiltonian, for 
some small value of A, and solve directly for the E(h)  in Eq. [76] .  (Variants of 
the finite field procedure include placing the molecule in a field generated by 
point charges a long distance away rather than explicitly adding the finite field 
to the Hamiltonian as described above.) By repeating for the same small value 
of h but with a negative sign, we obtain €(-A). Inasmuch as our objective is 
a El ah, we know 

and in the limit of X + 0, we obtain the exact derivative. Since each E(A) 
calculation would routinely be done by reoptimizing the MOs in the presence 
of the perturbation and, in the case of a correlated calculation, the configura- 
tion coefficients, in this procedure we are actually including the effects of the 
non-Hellmann-Feynman terms in Eq. [79] .  Even though this approach seems 
to make good sense only for properties such as dipole moments, where A8 = 
&e * ri and we can “turn on’, the electric field strength vector E, we can 
actually evaluate any first-order property in this way. For example, the spin 
density is not usually thought to be a field-dependent property, but we can add 
an operator to H and evaluate spin densities.12’ Hence, this “finite field” 
procedure is simply an artifice for indirectly calculating the property. 

In finite field calculations we have to worry about numerical accuracy 
because the field strength must be large enough to cause an adequate change in 
the significant digits of E(h), but should also be small enough to make the 
numerical derivative accurate. Typically fields of 0.001 to 0.005 au are used for 
dipole moments and polarizabilities, but for the hyperpolarizabilities p and y, 
which are third and fourth derivatives of the energy with respect to an elec- 
tric field, the precision of finite-field calculations can be questioned. A field 
strength of (O.OOl)4 = 10-12 means that more than 12 significant digits in the 
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energy are necessary to evaluate y accurately. This is typically beyond the 
precision of the molecular integral evaluation. Finally, of formal but generally 
not numerical significance, adding an electric field to the electrostatic Hamil- 
tonian gives an %(A) that is unbound. Its exact solution corresponds to the 
experimentally well-known field ionization, leading to a cation plus an elec- 
tron. The use of a finite basis set makes the field-ionized solution, which 
requires a continuum description of the free electron, inaccessible, so practical 
finite field calculations should not run into this difficulty. 

The solution to all the foregoing reservations lies in analytical evaluation 
of first-order properties. The critical quantity is the “relaxed” 
D(1) = Ep,q (pp(l)Dpq’p$(l) when D consists of the one-particle response 

P? 
density and the MO relaxation part. This is the same density used in analytical 
gradients, but the final form of the equations for ordinary properties is just (6) 
= J6( l )D( l )d~  = 2 , ,  dPqDpq. The finite field procedure is clearly less desirable 
than a calculation based on “relaxed density” because once D(l )  has been 
obtained, all one-electron properties can be rapidly evaluated by just multiply- 
ing Dpq with the appropriate integral 0,, and summing. Alternatively, many 
separate finite field calculations would be needed to get all properties. We will 
thus have a Dpq for all levels of theory where analytical gradients have been 
implemented (MBPT(2), MBPT(3), MBPT(4), CCSD, CCSD(T), QCISD(T), 
etc.) in ACES 11. With the aid of this quantity, we can investigate the role of 
electron correlation on molecular properties. 

Results for dipole moments are shown in Table 29.l3’ Clearly, coupled 
with good basis sets, correlated methods can do quite well for this property. 
Elsewhere, we have used relaxed density-based CC and MBPT methods to 
study spin densities’29 and the related hyperfine coupling constants; to evalu- 
ate relativistic corrections (Darwin and mass-velocity term) when impor- 
tant;13’ and to evaluate highly accurate electric field gradients to extract nu- 
clear quadruple 

Table 29 Variation of Ground State Dipole Moments (au) of Selected Small 
Molecules with Different Basis Sets and Correlated Methods 

Basis set oc H2O H3N H2S HF 

DZP-MBPT(2) 0.1447 0.8229 0.7102 0.4902 0.7642 
DZP-CCSD 0.0585 0.8163 0.6990 0.4626 0.7602 
DZP- CCSD (T) 0.0752 0.8 114 0.6963 0.4599 0.7564 
TZP-MBPT(2) 0.1222 0.8387 0.7368 - 0.7671 
TZP-CCSD 0.0344 0.8294 0.7249 - 0.7625 
TZP-CCSD (T) 0.0558 0.8248 0.7229 - 0.7580 
POL 1 -MBPT( 2) 0.1208 0.7297 0.5994 0.4053 0.7079 
POL 1 -CCSD 0.0421 0.7287 0.5975 0.3924 0.7079 
POLI-CCSD(T) 0.0581 0.7215 0.5904 0.3857 0.7014 
Experimental +0.044 0.721 0.578 0.401 0.708 
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Second-Order Properties 
Second order properties derive from the second derivative term in Eq. 

[78]. For the most general case we should also allow for a second-order pertur- 
bation, X ( h )  = H(0) + (aX/dX)h + '/2 (a2X/dh2)h2 from which differentiation 
of the Schrodinger equation gives 

[Allowing A to be a vector would define all nine components of the second 
derivative tensor (a2EldAiaAj).] For the polarizability tensor where A0 = Zjc - ri 
and many other examples, there is no d2X/aA2 perturbation. Once again, 
if we cannot solve Eq. [80] exactly (or have all parameters optimum), a non- 
Hellmann-Feynman term that depends on the second derivative (i.e., second 
order) perturbed wavefunction must be considered. When the theorem is satis- 
fied, the new information we require is only the first-order perturbed wavefunc- 
tion, a*/& This quantity is equivalent to $(I) in Eq. [29b], when V = aX/aA 
and E(1) = aE/ah. We can solve for a*/ah in the same way as before, by the 
textbook expedient of expanding in the complete set of solutions to H(O), 
which means all the excited electronic states, which as eigenfunctions of H(O), 
are orthogonal to the ground state. Using the zz component of the po- 
larizability as an example, 

Equation [86] is sometimes useful, e.g., when a knowledge of the excitation 
energies and polarized components of the transition moments for a few states 
could be used to estimate the a tensor from experiment. However, this sum- 
over-states formula is computationally about the worst approach to the theo- 
retical evaluation of second-order quantities. To use it directly would require 
computing all the excited states the finite basis permits and the appropriate 
transition moments. It can be solved indirectly, h 0 w e ~ e r . I ~ ~  

The superior approach is to simply compute the second derivative (Hes- 
sian) matrix ana1yti~ally.l~~ Just as for force constants, this is the most accurate 
and efficient procedure when the second-derivative formulas have been pro- 
grammed. Furthermore, any residual dependence on a2Y lax2 is alleviated, just 
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Table 30 Dipole Polarizabilities (au) for Molecules (POL1 Basis)u 

SCF 15.8 12.1 
MBPT(2) 17.9 15.0 
CCSD 17.4 14.4 
CCSD(T) 17.6 14.5 
Experimental 17.5 13.8 

HF 
a A a  

11.4 5.4 
11.5 4.4 
11.6 4.8 
11.8 4.9 
11.8 4.7 

C2H‘l 
6. A a  

28.0 12.6 
27.4 10.2 
26.9 10.7 
27.1 10.5 
28.7 11.0 

NH z 

a A a  

co 
Cr A a  

12.2 3.4 
13.1 3.9 
12.9 4.0 
13.0 3.9 
31.1 3.7 

SCF 4.9 1.3 8.5 1.1 12.9 0.5 23.6 0.4 
MBPT( 2) 5.7 1.1 9.8 0.4 14.4 1.9 24.5 0.9 
CCSD 5.6 1.2 9.6 0.6 14.1 1.7 24.3 0.9 
Experimental 5.5 1.3 9.8 0.6 14.6 1.9 25.5 

as in the gradient case, by introducing the configuration response (via A) and 
the molecular orbital relaxation contribution. [This can be done for open 
(UHFg2 and ROHFg3) and closed shells at the MBPT(2) level in ACES 11.1 To 
obtain polarizabilities at higher correlated levels, the dipole moment is com- 
puted as a function of a finite field ~ ( h ) ,  from which numerical differentiation 
provides the tensor a. Similarly, a second numerical differentiation gives Q and 
a third, y.l3’ The accuracy for a at several levels of theory is shown in Table 30. 

NUCLEAR MAGNETIC RESONANCE 

Although evaluations of harmonic force constants (d2E/dqidqj), electric 
polarizabilities (d2Eldeidej), and dipole moment derivatives ( d2E/deidqj) are 
perhaps the most common applications of second-order properties (or, equiva- 
lently, second derivatives), other areas of interest to chemists can be treated 
with these techniques. One such field of application that holds great promise 
for the future is the calculation of nuclear magnetic resonance chemical shifts. 

The theoretical study of NMR shifts has a relatively long history. Calcula- 
tions of magnetic properties inherently suffer from a “gauge origin” problem, 
which simply means that the results depend on the choice of origin of the 
coordinate system (e.g., the calculated NMR shifts for water will change if the 
molecule is “translated” along an axis). This clearly unphysical behavior can 
be avoided by assigning a local gauge origin to each basis function, which is 
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known as a “gauge-including atomic orbital” (GIAO).’35 This approach was 
first tried nearly 20 years ago, but a straightforward implementation requires 
evaluation of difficult integrals, which involve complex quantities, and did not 
find wide acceptance. Subsequently, a number of methods designed to mini- 
mize the gauge origin problem were suggested-the IGLO’36 and LORG’37 
techniques-but these still do not completely do away with the problem. Even- 
tually, it was realized that analytic second-derivative techniques could be used 
to avoid many of the complicated steps involving the GIAO basis function 
integrals, and a number of applications of the GIAO approach were carried out 
at the SCF leve1.13* In particular, when the second derivatives are evaluated 
analytically, no arithmetic involving complex numbers needs to be performed. 

Elements of the chemical shift tensor u for a particular nucleus -q are 
given by the mixed second derivative of the energy with respect to the nuclear 
magnetic moments [1,,(q)] and the magnetic field [B j ]  

The chemical shift is then given by ‘/sTr(o). 
Applications of the GIAO approach at the SCF level are now relatively 

routine, but correlated calculations are more difficult because the most conve- 
nient implementations of this approach require the analytic evaluation of the 
second derivatives. Therefore, correlated studies using GIAO basis functions 
are effectively limited to levels of theory for which analytic second-derivative 
methods are available. Although the number of calculations thus far carried out 
on chemical shifts is far too small to give us a clear picture of basis set and 
correlation effects, the initial results of GIAO-MBPT(2)  calculation^'^^ suggest 
that correlation is indeed important for these phenomena. In Table 31 are 
results from a few representative calculations of 1 7 0  chemical shifts. 

From these results and a limited number of other studies, it appears that 
the correlation effects are most pronounced for systems with multiple bonds, 
which should come as no surprise. In addition, it appears that basis set and 
correlation effects tend to act in different directions, which, of course, can lead 

Table 31 1’0 Chemical Shifts 
~~ ~ 

Molecule Basis set SCF MBPT(2) Experimental 
DZP 331.7 345.4 344.0 
TWP 323.2 339.8 344.0 

COZ DZP 216.9 253.0 243.4 
TZ2P 200.4 236.4 243.4 

co DZP -96.7 -27.3 -42.3 
TZ2P - 113.5 -54.1 -42.3 

HZO 
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to fortuitous cancellation and the appearance of Pauling points. However, since 
the GIAO method is currently limited to the SCF and MBPT(2) levels, the effect 
of higher order correlation corrections on the calculated chemical shifts are not 
yet known. 
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APPENDIX 

Quadratic Configuration Interaction 
(QCI) 
What is QCI? To answer this question we need to consider the relation- 

ship between CI and CC theory in a little more detail. Since the exact GI 
wavefunction is 'PcI = (1 + el + e, + e3 + ; * + + en)@o andAPcc exp, ('TI 
+ f 2  + * * + fn)QO2 it follows that q1 = T,,AC, = ?% + ?{/2, C3 = T3 + TIT2 
+ ?:/3! and e4 = T4 + ?$/2 + f :T2 /2  + TIT3 + T;/4! etc. The inclusion of 
?3/2 in even the simplest CCD model explains why CCD is usually better than 
CID, CISD, or even CISDT. Once we have CISDTQ, this term is picked up 
along with several others showing that CISDTQ = CCSD(T) (e.g., as shown in 
Table 4). In operator form, the CISD equations in the canonical SCF case are 

In contrast, in terms of ep, the CCSD equations are 
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AE = (@OlHNc2l@O> 

where c; = C, - T3 and cb = C4 - f4 - FIT3. Remember, while the AE 
remains in CI, it has to disappear from extensive methods. Algebraic analysis 
shows that AE(@$',l@.,) (which is an unlinked term) is equal to a term derived 
from flf2 in C; in Eq. [88]. Similarly, AE(@f'/c2~@,,) equals a term arising 
from the T f / 2  + f : f 2 / 2  terms in C i  in Eq. [89]. Eliminating the corresponding 
terms from the equations eliminates AE, making the CCSD method extensive. 

The idea of QCI is to replace these essential terms by the closest CI 
coefficient analog. Namely, c,cz = F1f2 + and @2 = f j / 2  + ?iT2/2 
+ c/4. Hence, the QCISD equations are 

These differ from CCSD via the C; term in the double-excitation equation and 
the different numerical factors in the f: and fi  terms, but none of these terms 
is required to cancel unlinked terms. Also, none of these terms contributes 
before the fifth-order energy in the canonical SCF case. So usually QCISD == 

CCSD (see Table 32). QCISD's mean error of 6.41 compares with 7.06 for 
CCSD. Also, since nonlinear T terms tend to raise the correlation energy, their 
neglect in QCISD will usually cause E(QC1SD) < E(CCSD) slightly. If we 
restrict ourselves to just CCD, then QCID = CCD. Also, it is apparent from the 
derivation above that QCISD is an extensive (i.e., many-body) method. It is 
also clear that for two electrons, CISD = QCISD = CCSD. Unlike CCSD, 
QCISD is defined only in the canonical SCF case. Besides keeping the effects of 
TI small because of the Brillouin theorem, this is necessary to maintain the 
extensive property of the method: otherwise, AE = (@oIHN(cl + c2))QO) and 
adding the additional ClC2 term to Eq. [90] and c$/2 in the single excitation 
equation can lead to residual unlinked terms in the wavefunction. This is also 
why there is no extensive QCISDT method.140 

Noniterative T3 contributions can be added to QCISD just as in the 
CCSD case. The contribution from double excitations to T3 is formally exact- 
ly the same T(CCSD) term, except that it is evaluated using QCISD coeffi- 
cients, that is, T(QC1SD). QCISD(T) further adds a single excitation term like 
CCSD(T), but it needs to be multiplied by 2 compared to CCSD because the C; 
term remaining in Eq. [89] introduces this term once and iteratively in CCSD. 
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Unlike CI, where YClsD = (1 + c, + c2)Q0, and CCSD, where qccsD = 
exp('f, + 'f2)@,,, the YQcIsD wavefunction cannot be simply represented. It is 
an approximate truncation of exp('f, + f'JQ0 that is different for the single 
and double excitation projections. The QCISD(T) mean error of 0.77 compares 
to 1.15 for CCSD(T). Also adding T4 effects gives QCISD(TQ*), whose mean 
error of 0.41 is close to that of CC5SD(TQ"), 0.44. QCISD and QCISD(T) are 
simply approximate versions of the CCSD and CCSD(T) equations; therefore 
all the analytical gradient and other methods in ACES I1 contain QCI as a 
special case. 
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